| 研究生: |
安庫棣 Ankam VinodKumar Reddy |
|---|---|
| 論文名稱: |
用於垂直軸風力發電機的中線扭轉型長方形葉片之參數最佳化設計 Optimal design of Flat Rectangular Blade with Twisted Centreline Used for Vertical Axis Wind turbine |
| 指導教授: |
夏育群
Shiah, Yui-Chuin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程國際碩博士學位學程 International Master/Doctoral Degree Program on Energy Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 田口分析 、中心線模型 |
| 外文關鍵詞: | VAWT, CFD, GIT, Taguchi Method, Centreline model |
| 相關次數: | 點閱:133 下載:36 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在優化葉片設計並評估採用具有扭曲中心線的扁平矩形葉片的小型三葉片 VAWT(垂直軸風力渦輪機)的空氣動力學性能。扭曲中心線模型的空氣動力學行為由商業 CFD(計算流體動力學)軟件 FLUENT 模擬,以產生控制因素的最佳組合,即葉片寬度、定位角度和高度。為了表徵流動特性,通過 CFD 模擬和田口分析進行了綜合研究,以優化選定的控制因素。結果發現控制因素的最佳組合為葉片寬度80mm,高度260mm,定位角00。通過GIT數值驗證表明,結果大部分時間收斂,網格劃分最大在當前模型分析中的影響可以忽略不計。當前的設計令人驚訝地比基準模型提高了 87.5% 的扭矩和 87.9% 的 Cp。在採用扭曲中心線設計時,觀察到的力波動不太明顯,這可能會導致渦輪機的使用壽命更長。從這項研究中獲得的輸出假設了一個更好、更簡單的 VAWT 設計,適用於風速相對較小的環境,如城市地區和農村生活區。
This research aims to optimize the blade design and estimate the aerodynamic performance of a small three-bladed VAWT (vertical axis wind turbine) adopting flat rectangular blades with a twisted centreline. Aerodynamic behaviors of the twisted-centreline model were simulated by the commercial CFD (computational fluid dynamics) software, FLUENT, to yield optimal combinations of control factors, namely blade width, positioning angle, and height. To characterize the flow characteristics, comprehensive studies were carried out by the CFD simulations and Taguchi analysis to optimize the selected control factors. As a result, the optimal combination of control factors was found to be blade width of 80mm, the height of 260mm, and the positioning angle of 00. Numerical validation through GIT showed that the results converge most of the time, and meshing has the most negligible effect in the current model analysis. Surprisingly, the current design has improved 87.5% of Torque and 87.9% of Cp from the baseline model. In employing the twisted centreline design, the force fluctuations are observed to be less significant, which may result in more life span of the turbine. The outputs obtained from this study postulates a better and simple VAWT design for the surroundings that have relatively less wind speeds, like the urban areas and rural living zones.
[1] Rutvik Ahire, Shantanu Gawli, Kunal Geedh, and Akshay Gade, Review on Vertical Axis Wind Turbine, International Journal of Advances in Scientific Research and Engineering (IJASRE 2017), 5-9.
[2] Mohamed Taher Bouzahera, Mohamed Hadid, Active control of the vertical axis wind turbine by the association of flapping wings to their blades, The 5th International Conference on Sustainable Energy Information Technology (SEIT 2015) 714 – 722.
[3] R. Gokulnath, P. Booma Devi, M. Senbagan, S. Manigandan, CFD Analysis of Savonius Vertical Axis Wind Turbine, International Journal of Mechanical Engineering and Technology (IJMET 2018) 1378–1383.
[4] Asad Muneer, Dr.Mohammad Bilal Khan, Umer Bin Sarwar, Zia Ahmad Khan, Muhammad Sohaib Badar, CFD analysis of a Savonius Vertical Axis Wind Turbine, Power Generation System and Renewable Energy Technologies(PGSRET 2015).
[5] Andrea Alaimo, Antonio Esposito, Antonio Messineo, Calogero Orlando, and Davide Tumino, 3D CFD Analysis of a Vertical Axis Wind Turbine, Energies 2015 3013-3033.
[6] Suchaya Unsakul, Chaianant Sranpat, Pongchalat Chaisiriroj, Thananchai Leephakpreeda, CFD-Based Performance Analysis and Experimental Investigation of Design Factors of Vertical Axis Wind Turbines under Low Wind Speed Conditions in Thailand, Journal of Flow Control, Measurement & Visualization (JFCMV 2017), 86-98.
[7] NurAlom, Bastav Borah, Ujjwal K.Saha, An insight into the drag and lift characteristics of modified Bach and Benesh Profiles of Savonius rotor, Energy Procedia (2018), 50-56.
[8] M. Tahani and M. Moradi Aerodynamic Investigation of a Wind Turbine using CFD and Modified BEM Methods, Journal of Applied Fluid Mechanics (JAFM 2016) 107-111.
[9] Alessandro Bianchini, Francesco Balduzzi, Giovanni Ferrara, Lorenzo Ferrari, Critical Analysis of Dynamic stall models In Low-Order Simulation Models for Vertical-Axis Wind Turbines, Energy Procedia 2016, 488-495.
[10] Sahishnu R.Shah, Rakesh Kumar, Kaamran Raahemifar and Alan S.Fung, Design, Modeling and economic performance of a vertical axis wind turbine, Energy Reports (2018), 619-623.
[11] Gabriele Bedona, Uwe Schmidt Paulsen, Helge Aagård Madsen, Federico Bellonia, Marco Raciti Castellia, and Ernesto Benini, Aerodynamic Benchmarking of the Deepwind Design, Energy Procedia (2015) 677 – 682.
[12] Vaibhav H Davane and M L Thorat, Performance Analysis of Giromill Vertical Axis Wind Turbine with NACA 63618 Airfoil, International Research Journal of Engineering and Technology (IRJET 2017), 566-572.
[13] Abdolrahim Rezaeiha, Ricardo Pereira, and Marios Kotsonis, Fluctuations of the angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine, Renewable Energy (2017), 904-916.
[14] Phadke MS., Quality Engineering using robust design. PTR Prentice-Hall inc., 1989
[15] Zhenyu Wnag, Yuchen Wang, Mei Zhuang, Improvement of Aerodynamic performance of Vertical axis wind Turbines with leading-edge serrations and helical blades using CFD and Taguchi method, Energy Conversion and Management 177(2018) 107-121.
[16] Manwell, J. F., McGowan, J. C., & Rogers, A. L. (2009). Wind Energy Explained- Theory, Design, and Application. John Wiley & Sons Ltd.
[17] Spera, D. A. (Ed.) (1994) Wind Turbine Technology. American Society of Mechanical Engineers, New York.
[18] Paraschivoiu, I., Wind Turbine Design With Emphasis on Darrieus Concept. Presses international es Polytechnique, 2002.
[19] Brahimi, M. T., Allet, A., & Paraschivoiu, I., Aerodynamic Analysis Models for Vertical-Axis Wind Turbines, International Journal of Rotating Machinery, Vol.2 No. 1 pp. 15-21, 1995.
[20] Tullis, S., Fiedler, A., McLaren, K., & Ziada, S. Medium-solidity Vertical Axis Wind Turbines for use in Urban Environments. Hamilton, Canada.
[21] Tong, W. (2010). Fundamentals of wind energy. In W. Tong, Wind power generation and wind turbine design (p. 112). WIT Press.
[22] Meng-Hsien Lee, "Numerical Simulation of the Aerodynamic Performance of Horizontal-Axis Wind Turbine Blades," Department of Aeronautics and Astronautics, National Cheng Kung University. (2014)
[23] Baliga, B. R., and Patankar, S. V., "A Control Volume Finite-element Method for Two-dimensional Fluid Flow and Heat Transfer," Numerical Heat Transfer, Vol.6, 1983, PP. 245-261.
[24] Menter, F. R. (1993), “Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows," AIAA Journal, 93-2906.
[25] A. Rezaeiha, I. Kalkman, B. Blocken, CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment Renew Energy, 107 (2017), pp. 373-385.
[26] J.M. Edwards, L.A. Danao, R.J. Howell, PIV measurements and CFD simulation of the performance and flow physics and of a small-scale vertical axis wind turbine Wind Energy, 1 (2015), pp. 201-217, 10.1002/we
[27] L.A. Danao, O. Eboibi, R. Howell, An experimental investigation into the influence of unsteady wind on the performance of a vertical axis wind turbine Applied Energy, 107 (2013), pp. 403-411.
[28] A. Alaimo, A. Esposito, A. Messineo, C. Orlando, D. Tumino, 3D CFD analysis of a vertical axis wind turbine Energies, 8 (2015), pp. 3013-3033.
[29] M.H. Mohamed, A.M. Ali, A.A. Hafiz, CFD analysis for H-rotor Darrieus turbine as a low-speed wind energy converter Engineering Science Technologies Int J, 18 (2015), pp. 1-13.
[30] Minhyung Lee, Gwanyong Park, Changyoung Park, and Changmin Kim, Improvement of Grid Independence Test for Computational Fluid Dynamics Model of Building Based on Grid Resolution, Advances in Civil engineering, Hindawi, Vol. 2020, Art. ID 8827936
[31] P. J. Roache, “Quantification of uncertainty in computational fluid dynamics,” Annual Review of Fluid Mechanics, vol. 29, no. 1, pp. 123–160, 1997.