研究生: |
蘇侯名 Su, Hou-Ming |
---|---|
論文名稱: |
離子化之聚醚/矽氧烷交聯高分子電解質之合成與其鋰電池應用 Syntheses of Ionized Gel Polymer Electrolytes based on Crosslinked Polyether-Siloxane Hybrids for Lithium-Ion Battery Applications |
指導教授: |
郭炳林
Kuo, Ping-Lin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 鋰電池 、高分子電解質 、離子液體 、聚醚二胺 |
外文關鍵詞: | lithium battery, polymer electrolyte, ionic liquid, polyetherdiamine |
相關次數: | 點閱:66 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗合成出四級胺鹽化矽烷,經由FT-IR與1H-NMR鑑定,將其以溶膠凝膠法導入聚醚/矽氧烷的交聯高分子系統中,製成離子化之聚醚/矽氧烷交聯高分子電解質,其化學穩定性可達4.5V且熱裂解溫度約400℃,極限氧指數達24。由SEM觀察與TGA測量可得知在四級胺鹽矽烷比例增加至3/4時有微相分離的情形,高分子膜表面出現塊狀物的分布。從DSC的觀察可知聚醚/矽氧烷膠態高分子電解質隨著四級胺鹽矽烷的加入,Tg逐漸下降,其30℃導電度從未加入四級胺鹽2.18*10-4 S cm-1大幅提升至5.93*10-3 S cm-1,而在鋰離子遷移數上也可達0.568。在正極半電池測試中5C放電時,可保有接近90 mAh/g放電電容值,全電池應用上在1C放電時與Celgard-M824一樣擁有約100mAh/g的電容值,可得知其為一提升鋰離子遷移數且可應用於鋰電池的高分子電解質。
Synthesis of quaternary ammonium salt has been accomplished and characterized with 1H-NMR and FTIR. And this quaternary ammonium salt is added to polyether/siloxane networks via sol-gel approach to form Ionized Gel Polymer Electrolytes based on Crosslinked polyether-Siloxane Hybrids. From SEM analysis and TGA test, we find out microphase separation in polymer system when the proportion of quaternary ammonium salt increases to three quarters. The ionic polymer electrolytes has great electrochemical window and thermal stability up to 4.5 V (vs. Li/Li+) and 400℃. The DSC results indicate that the glass transition temperature of ionic gel polymer electrolyte decreases with the addition of quaternary ammonium.Then the ionic conductivity of ionic polymer electrolyte is enhanced to 5.93*10-3 S cm-1 at 30℃, compared to that of the original polyether/siloxane hybrid(2.18*10-4 S cm-1). Furthermore, the lithium-ion transference number of ionic gel polymer electrolyte is up to 0.568. For battery application, the half-cell specific discharge capacity of gel polymer electrolyte increase from 35mAh/g to 90mAh/g at 5C with the addition of quaternary ammonium salt. Moreover, the full-cell performance of gel polymer electrolyte is as good as commercial separator (100mAh/g at 1C). The above advantages of the ionized gel polymer electrolytes allow it to act as a separator in lithium-ion battery.
1 Y. Li, J. Song, and J. Yang, "A review on structure model and energy system design of lithium-ion battery in renewable energy vehicle," Renewable and Sustainable Energy Reviews 37 (0), 627-633 (2014).
2 J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature 414 (6861), 359-367 (2001).
3 J. Hajek, French Patent 8, 10 (1949).
4 N. Goldenfeld, "Dynamics of dendritic growth," Journal of Power Sources 26 (1–2), 121-128 (1989).
5 K. Xu, "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries," Chemical Reviews 104 (10), 4303-4417 (2004).
6 K. Ozawa, "LITHIUM-ION RECHARGEABLE BATTERIES WITH LICOO2 AND CARBON ELECTRODES - THE LICOO2 C SYSTEM," Solid State Ionics 69 (3-4), 212-221 (1994).
7 V. Aravindan, J. Gnanaraj, S. Madhavi, and H. K. Liu, "Lithium-Ion Conducting Electrolyte Salts for Lithium Batteries," Chem.-Eur. J. 17 (51), 14326-14346 (2011).
8 K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "LIXCOO2 "(OLESS-THANXLESS-THAN-OR-EQUAL-TO1) - A NEW CATHODE MATERIAL FOR BATTERIES OF HIGH-ENERGY DENSITY," Mater. Res. Bull. 15 (6), 783-789 (1980).
9 M. S. Whittingham, "Lithium batteries and cathode materials," Chemical Reviews 104 (10), 4271-4301 (2004).
10 Y. Shao-Horn, L. Croguennec, C. Delmas, E. C. Nelson, and M. A. O'Keefe, "Atomic resolution of lithium ions in LiCoO2," Nat Mater 2 (7), 464-467 (2003).
11 A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries," J. Electrochem. Soc. 144 (4), 1188-1194 (1997).
12 S.-Y. Chung, J. T. Bloking, and Y.-M. Chiang, "Electronically conductive phospho-olivines as lithium storage electrodes," Nat Mater 1 (2), 123-128 (2002).
13 S. Yang, Y. Song, K. Ngala, P. Y. Zavalij, and M. Stanley Whittingham, "Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides," Journal of Power Sources 119–121 (0), 239-246 (2003).
14 A. Herold, Bull. Soc. Chim. France 187, 999 (1955).
15 J. O. Besenhard, "The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes," Carbon 14 (2), 111-115 (1976).
16 C. Z. S.Basu, P.J.Flandersa,C.D.Fuersta,W.D.Johnsona,J.E. Fischera, Mater.Sci.Eng. 38, 275 (1979).
17 V. A. Nalimova, D. Guérard, M. Lelaurain, and O. V. Fateev, "X-ray investigation of highly saturated Li-graphite intercalation compound," Carbon 33 (2), 177-181 (1995).
18 J. Jiang and J. R. Dahn, "Effects of solvents and salts on the thermal stability of LiC6," Electrochimica Acta 49 (26), 4599-4604 (2004).
19 V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, "Challenges in the development of advanced Li-ion batteries: a review," Energy Environ. Sci. 4 (9), 3243-3262 (2011).
20 E. Quartarone and P. Mustarelli, "Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives," Chem. Soc. Rev. 40 (5), 2525-2540 (2011).
21 M. C. Armand, J. M.; Duclot, M., Second International Meeting on Solid Eletrolytes, St. Andrews, Scotland, Extended Abstracts (1978).
22 Y.-C. Pan, D. Saikia, J. Fang, L.-D. Tsai, G. T. K. Fey, and H.-M. Kao, "A new organic-inorganic hybrid electrolyte based on polyacrylonitrile, polyether diamine and alkoxysilanes for lithium ion batteries: synthesis, structural properties, and electrochemical characterization," RSC Advances 4 (26), 13293-13303 (2014).
23 G. Feuillade and P. Perche, "Ion-conductive macromolecular gels and membranes for solid lithium cells," J Appl Electrochem 5 (1), 63-69 (1975).
24 F. B. Dias, L. Plomp, and J. B. J. Veldhuis, "Trends in polymer electrolytes for secondary lithium batteries," Journal of Power Sources 88 (2), 169-191 (2000).
25 J. E. Weston and B. C. H. Steele, "Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes," Solid State Ionics 7 (1), 75-79 (1982).
26 F. Capuano, F. Croce, and B. Scrosati, "Composite Polymer Electrolytes," J. Electrochem. Soc. 138 (7), 1918-1922 (1991).
27 J. M. Tarascon and D. Guyomard, "New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells," Solid State Ionics 69 (3–4), 293-305 (1994).
28 G. H. Newman, R. W. Francis, L. H. Gaines, and B. M. L. Rao, "Hazard Investigations of LiClO4 / Dioxolane Electrolyte," J. Electrochem. Soc. 127 (9), 2025-2027 (1980).
29 H. Yang, G. V. Zhuang, and P. N. Ross Jr, "Thermal stability of LiPF6 salt and Li-ion battery electrolytes containing LiPF6," Journal of Power Sources 161 (1), 573-579 (2006).
30 C. W. Walker, J. D. Cox, and M. Salomon, "Conductivity and Electrochemical Stability of Electrolytes Containing Organic Solvent Mixtures with Lithium tris(Trifluoromethanesulfonyl)methide," J. Electrochem. Soc. 143 (4), L80-L82 (1996).
31 B. Markovsky, F. Amalraj, H. E. Gottlieb, Y. Gofer, S. K. Martha, and D. Aurbach, "On the Electrochemical Behavior of Aluminum Electrodes in Nonaqueous Electrolyte Solutions of Lithium Salts," J. Electrochem. Soc. 157 (4), A423-A429 (2010).
32 Y.-S. Ye, J. Rick, and B.-J. Hwang, "Ionic liquid polymer electrolytes," Journal of Materials Chemistry A 1 (8), 2719-2743 (2013).
33 R. S. Kühnel, N. Böckenfeld, S. Passerini, M. Winter, and A. Balducci, "Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries," Electrochimica Acta 56 (11), 4092-4099 (2011).
34 A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé, A. Vijh, and K. Zaghib, "Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance," Journal of Power Sources 195 (3), 845-852 (2010).
35 J. K. Kim, A. Matic, J. H. Ahn, and P. Jacobsson, "An imidazolium based ionic liquid electrolyte for lithium batteries," Journal of Power Sources 195 (22), 7639-7643 (2010).
36 H. Matsumoto, H. Sakaebe, and K. Tatsumi, "Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte," Journal of Power Sources 146 (1-2), 45-50 (2005).
37 B. Garcia, S. Lavallée, G. Perron, C. Michot, and M. Armand, "Room temperature molten salts as lithium battery electrolyte," Electrochimica Acta 49 (26), 4583-4588 (2004).
38 K. Kim, Y.-H. Cho, and H.-C. Shin, "1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries," Journal of Power Sources 225 (0), 113-118 (2013).
39 A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, and H. Ohno, "LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries," Journal of Power Sources 174 (1), 342-348 (2007).
40 G. B. Appetecchi, M. Montanino, D. Zane, M. Carewska, F. Alessandrini, and S. Passerini, "Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids," Electrochimica Acta 54 (4), 1325-1332 (2009).
41 J. Reiter, M. Nádherná, and R. Dominko, "Graphite and LiCo1/3Mn1/3Ni1/3O2 electrodes with piperidinium ionic liquid and lithium bis(fluorosulfonyl)imide for Li-ion batteries," Journal of Power Sources 205 (0), 402-407 (2012).
42 M. Montanino, M. Carewska, F. Alessandrini, S. Passerini, and G. B. Appetecchi, "The role of the cation aliphatic side chain length in piperidinium bis(trifluoromethansulfonyl)imide ionic liquids," Electrochimica Acta 57 (0), 153-159 (2011).
43 B. Oh, D. Vissers, Z. Zhang, R. West, H. Tsukamoto, and K. Amine, "New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery," Journal of Power Sources 119–121 (0), 442-447 (2003).
44 K. M. Kim, N. V. Ly, J. H. Won, Y.-G. Lee, W. I. Cho, J. M. Ko, and R. B. Kaner, "Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives," Electrochimica Acta 136 (0), 182-188 (2014).
45 M. Walkowiak, G. Schroeder, B. Gierczyk, D. Waszak, and M. Osińska, "New lithium ion conducting polymer electrolytes based on polysiloxane grafted with Si-tripodand centers," Electrochemistry Communications 9 (7), 1558-1562 (2007).
46 E. Peled, "The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model," J. Electrochem. Soc. 126 (12), 2047-2051 (1979).
47 S. Rodrigues, N. Munichandraiah, and A. K. Shukla, "AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery," J Solid State Electrochem 3 (7-8), 397-405 (1999).
48 T. Kobayashi, S. Seki, Y. Mita, H. Miyashiro, N. Terada, and T. Kojima, "AC Impedance Analysis for 10 Ah-Class Lithium-ion Batteries," Electrochemistry 78 (5), 416-419 (2010).
49 D. Aurbach, "Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries," Journal of Power Sources 89 (2), 206-218 (2000).
50 P. G. Bruce, Solid State Electrochemistry. (Cambridge University Press, 1997).
51 J. Evans, C. A. Vincent, and P. G. Bruce, "Electrochemical measurement of transference numbers in polymer electrolytes," Polymer 28 (13), 2324-2328 (1987).
52 C.-C. Chen, W.-J. Liang, and P.-L. Kuo, "Solid polymer electrolytes III: Preparation, characterization, and ionic conductivity of new gelled polymer electrolytes based on segmented, perfluoropolyether-modified polyurethane," Journal of Polymer Science Part A: Polymer Chemistry 40 (4), 486-495 (2002).
53 W.-J. Liang, T.-Y. Chen, and P.-L. Kuo, "Solid polymer electrolytes. VII. Preparation and ionic conductivity of gelled polymer electrolytes based on poly(ethylene glycol) diglycidyl ether cured with α,ω-diamino poly(propylene oxide)," Journal of Applied Polymer Science 92 (2), 1264-1270 (2004).
54 J. L. Schaefer, D. A. Yanga, and L. A. Archer, "High Lithium Transference Number Electrolytes via Creation of 3-Dimensional, Charged, Nanoporous Networks from Dense Functionalized Nanoparticle Composites," Chemistry of Materials 25 (6), 834-839 (2013).
55 S. Liu, N. Imanishi, T. Zhang, A. Hirano, Y. Takeda, O. Yamamoto, and J. Yang, "Lithium Dendrite Formation in Li/Poly(ethylene oxide)–Lithium Bis(trifluoromethanesulfonyl)imide and N-Methyl-N-propylpiperidinium Bis(trifluoromethanesulfonyl)imide/Li Cells," J. Electrochem. Soc. 157 (10), A1092-A1098 (2010).
56 A. Ghosh, C. Wang, and P. Kofinas, "Block Copolymer Solid Battery Electrolyte with High Li-Ion Transference Number," J. Electrochem. Soc. 157 (7), A846-A849 (2010).
57 Y. Saito, M. Okano, T. Sakai, and T. Kamada, "Lithium Polymer Gel Electrolytes Designed to Control Ionic Mobility," The Journal of Physical Chemistry C 118 (12), 6064-6068 (2014).