簡易檢索 / 詳目顯示

研究生: 賴于暄
Lai, Yu-Hsuan
論文名稱: 開發力量控制觸覺回饋裝置於大範圍之三維虛擬阻抗實現
Development of a Force-controlled Haptic Device for Large-range Impedance Rendering in Three Dimensions
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 234
中文關鍵詞: 觸覺回饋裝置並聯式機構串聯彈性致動器力量控制阻抗控制
外文關鍵詞: Haptic device, parallel robot, force control, series elastic actuator, stiffness rendering
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在遠端與虛擬操作領域中,觸覺回饋裝置作為操作者與遠端或虛擬環境間的溝通橋樑,須具備良好的力量控制性能與能呈現大範圍且精準的虛擬阻抗表現。由於並聯式機構具有高精度與高剛性的優勢,目前被廣泛應用於觸覺回饋裝置的開發中,然而現存並聯式觸覺回饋裝置其雅可比矩陣非定值,除了增添控制的複雜度,亦導致工作空間內各個位置的力量輸出表現與阻抗穩定上限不相同,且為了遷就阻抗表現較弱的區域,使其能呈現的虛擬勁度值受到限制。
    本文針對一具有定值雅可比矩陣之3-PRRR平移並聯式機構使用線性串聯彈性致動器進行驅動,令其達成x、y與z方向移動之觸覺回饋控制。串聯彈性致動器運用撓性元件串接馬達與負載,可大幅降低馬達及減速機構之慣性與摩擦對機器末端輸出的影響,因此相較於剛性致動器可達成更精準的輸出力量與勁度控制,此外,輸入與輸出關係為定值的特性,使觸覺回饋裝置整體工作空間的運動呈均勻表現,虛擬勁度的上限亦於工作空間中為一定值,因此可實現大範圍的勁度變化。為了達成大勁度的互動控制,觸覺回饋裝置本身須具備高結構剛性,因此本文首先針對機構原型剛性進行探討,而後在串聯彈性致動器建模中將機構耦合效應納入考量,以求取真實的觸覺回饋裝置動力模型,再根據機器模型設計三維的力量控制器與阻抗控制器,同時以實驗驗證各方向力量與阻抗控制性能,其中,透過虛擬牆控制與各項阻抗指標性實驗證明本文之觸覺回饋裝置於各方向上均有精準且變化廣泛的阻抗表現,使之可與不同勁度大小的環境進行互動。

    A haptic device is used to transmit impedance to a human user to mimic the impedance of a virtual or real environment. Existing haptic devices use serial or parallel robots to deliver impedance in multiple dimensions. These robots usually have nonconstant Jacobian matrices that result in poor dynamic properties and low impedance stability limits in certain regions within the workspace. To account for these regions, the range of stiffness rendering is limited. This research presents a three-degrees-of-freedom (DoFs) translational parallel robot with a constant Jacobian matrix in the entire workspace. The consistent dynamic parameters allow a large-range virtual stiffness to be rendered. To provide the accurate and large output force required for high-stiffness rendering, series elastic actuators (SEAs) are used as the input for the parallel robot. SEAs can be used to minimize the geartrain friction and effective inertia to control the output force and impedance more accurately. Design, modeling, and three-dimensional impedance control of the haptic device are presented in this work. Multi-dimensional impedance and virtual-wall control experiments are illustrated to demonstrate the accuracy and rendering range of the haptic device. Since the stable range of virtual stiffness is much larger than existing ones, it is expected that this novel device can be used to render accurate stiffness for both soft and stiff environments.

    摘要 I English Abstract II 誌謝 VI 目錄 VIII 表目錄 XIII 圖目錄 XVII 符號說明 XXX 第一章 緒論 1 1.1 背景介紹 1 1.2 文獻回顧 3 1.2.1 觸覺回饋裝置機構型式文獻回顧 3 1.2.2 力量感測方式文獻回顧 6 1.2.3 互動控制文獻回顧 9 1.3 研究動機與目標 11 1.4 論文架構 12 第二章 觸覺回饋裝置原型設計與機構性能分析 14 2.1 前言 14 2.2 3-PRRR機構運動分析 14 2.2.1 位置分析 15 2.2.2 靜力分析 18 2.3 3-PRRR機構原型設計改良 19 2.3.1 改良一型原型設計 20 2.3.2 改良二型原型設計 24 2.4 3-PRRR機構間隙與剛性分析 26 2.4.1 間隙與剛性分析配置 27 2.4.2 間隙分析結果 29 2.4.3 剛性分析結果 31 2.5 線性致動器原型設計 37 2.5.1 馬達選用 37 2.5.2 第一型線性致動器設計 38 2.5.3 第二型線性致動器設計 41 2.5.4 平面彈簧設計 46 2.6 本章小結 48 第三章 線性串聯彈性致動器之驅動與建模 50 3.1 前言 50 3.2 線性串聯彈性致動器驅動方式 50 3.2.1 交軸驅動法 51 3.2.2 速度估測法 55 3.2.3 馬達驅動電路 60 3.2.4 軟硬體配置 62 3.3 線性串聯彈性致動器模型 63 3.3.1 時域模型 64 3.3.2 頻域模型 66 3.4 等效動力模型推導 67 3.4.1 等效質量計算 68 3.4.2 等效剛性計算 71 3.5 耦合效應於線性串聯彈性致動器模型 73 3.5.1 耦合時域模型 73 3.5.2 耦合頻域模型 76 3.6 線性串聯彈性致動器性能驗證 80 3.6.1 彈簧勁度校正 81 3.6.2 馬達飽和現象 82 3.7 本章小結 86 第四章 觸覺回饋裝置之控制器建立與性能分析 87 4.1 前言 87 4.2 力量控制器 87 4.2.1 力量控制器模型 88 4.2.2 系統鑑別 90 4.2.3 力量控制器最佳化設計 97 4.2.4 力量控制模擬模型建立與時域響應 100 4.2.5 力量控制頻域響應 103 4.2.6 力量控制器之摩擦補償 119 4.3 阻抗控制器建立與分析 134 4.3.1 阻抗控制器建立 134 4.3.2 阻抗控制器模型 139 4.3.3 一般型阻抗控制器穩定性分析 151 4.3.4 耦合型阻抗控制器穩定性分析 160 4.3.5 阻抗控制器模擬模型建立 166 4.4 本章小結 168 第五章 觸覺回饋裝置實驗與控制性能驗證 170 5.1 前言 170 5.2 重複度分析 170 5.2.1 位置控制器 171 5.2.2 速度估測法選用 177 5.2.3 重複度分析配置 178 5.2.4 重複度分析結果 180 5.3 阻抗控制性能實驗驗證 185 5.3.1 穩定性實驗與模擬 185 5.3.2 順向驅動位置追蹤實驗 191 5.3.3 虛擬勁度實驗 199 5.3.4 零阻抗逆向驅動實驗 207 5.3.5 虛擬牆控制實驗 213 5.4 本章小結 218 第六章 結論與可延伸之未來研究 220 6.1 結論 220 6.2 可延伸之未來研究 223 參考文獻 226

    [1] Goertz, R. C. (1949). Master-slave manipulator (Vol. 2635). Argonne National Laboratory.
    [2] Massie, T. H., & Salisbury, J. K. (1994, November). The phantom haptic interface: A device for probing virtual objects. In Proceedings of the ASME winter annual meeting, symposium on haptic interfaces for virtual environment and teleoperator systems (Vol. 55, No. 1, pp. 295-300).
    [3] Xiaojun, C., Yanping, L., Chengtao, W., Yiqun, W., Xudong, W., & Guofang, S. (2010, November). An integrated surgical planning and virtual training system using a force feedback haptic device for dental implant surgery. In 2010 International Conference on Audio, Language and Image Processing (pp. 1257-1261). IEEE.
    [4] Force Dimension Inc. " Haptic Devices – Omega.x " Available: https://www.forcedime-nsion.com/downloads/specs/specsheet-omega.3.pdf [Accessed: September 11, 2021]
    [5] Hannaford, B., & Okamura, A. M. (2016). Haptics. In Springer Handbook of Robotics (pp. 1063-1084). Springer, Cham.
    [6] Tan, H. Z., Srinivasan, M. A., Eberman, B., & Cheng, B. (1994). Human factors for the design of force-reflecting haptic interfaces. Dynamic systems and control, 55(1), 353-359.
    [7] Brooks, T. L. (1990, November). Telerobotic response requirements. In 1990 IEEE international conference on systems, man, and cybernetics conference proceedings (pp. 113-120). IEEE.
    [8] 3D Systems Inc. " Haptic Devices - Touch " Available: https://www.3dsystems.com/ha-ptics-devices/touch/specifications [Accessed: September 11, 2021]
    [9] Haption S.A. Inc. " Virtuose™ 6D " Available: https://www.haption.com/fr/products-fr/virtuose-6d-fr.html [Accessed: September 11, 2021]
    [10] Hoshyarmanesh, H., Zareinia, K., Lama, S., & Sutherland, G. R. (2021). Structural design of a microsurgery-specific haptic device: neuroArmPLUSHD prototype. Mechatronics, 73, 102481.
    [11] Clavel, R., “A fast robot with parallel geometry” 18th International Symposium on Industrial Robots Sydney, Australia (04 1988) pp. 91–100.
    [12] Novint Technologies Inc. " Falcon Haptic Devices " Available: https://hapticshouse.co-m/collections/falcons/products/white-falcon-3d-touch-haptic-controller [Accessed: Se-ptember 11, 2021]
    [13] Vulliez, M., Zeghloul, S., & Khatib, O. (2018). Design strategy and issues of the Delthaptic, a new 6-DOF parallel haptic device. Mechanism and Machine Theory, 128, 395-411.
    [14] Liu, G., Chen, Y., Xie, Z., & Geng, X. (2018). GASQP optimization for the dimensional synthesis of a delta mechanism based haptic device design. Robotics and Computer-Integrated Manufacturing, 51, 73-84.
    [15] Abeywardena, S., & Chen, C. (2017). Implementation and evaluation of a three-legged six-degrees-of-freedom parallel mechanism as an impedance-type haptic device. IEEE/ASME Transactions on Mechatronics, 22(3), 1412-1422.
    [16] Kim, K., Chung, W. K., & Youm, Y. (2003, October). Design and analysis of a new 7-DOF parallel type haptic device: PATHOS-II. In Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453) (Vol. 3, pp. 2241-2246). IEEE.
    [17] Saafi, H., Laribi, M. A., & Zeghloul, S. (2015). Redundantly actuated 3-RRR spherical parallel manipulator used as a haptic device: improving dexterity and eliminating singularity. Robotica, 33(5), 1113-1130.
    [18] Force Dimension Inc. " Haptic Devices – delta.6 " Available: https://www.forcedimens-ion.com/downloads/specs/specsheet-delta.6.pdf [Accessed: September 11, 2021]
    [19] Chen, Z., Zhang, Y., Wang, D., Li, C., & Zhang, Y. (2012, July). iFeel6-BH1500: A large-scale 6-DOF Haptic Device. In 2012 IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS) Proceedings (pp. 121-125). IEEE.
    [20] Butterfly Haptics LLC. " Maglev 200™ System " Available: https://butterflyhaptics.co-m/products/system/ [Accessed: September 12, 2021]
    [21] ATI Industrial Automation Inc. " Force/Torque Sensors - F/T Models " Available: https://www.ati-ia.com/products/ft/ft_models.aspx?id=Nano25 [Accessed: September 12, 2021]
    [22] Pratt, G. A., & Williamson, M. M. (1995, August). Series elastic actuators. In Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots (Vol. 1, pp. 399-406). IEEE.
    [23] Zinn, M., Khatib, O., Roth, B., & Salisbury, J. K. (2008, March). Large workspace haptic devices-a new actuation approach. In 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (pp. 185-192). IEEE.
    [24] Basafa, E., Sheikholeslami, M., Mirbagheri, A., Farahmand, F., & Vossoughi, G. R. (2009, September). Design and implementation of series elastic actuators for a haptic laparoscopic device. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 6054-6057). IEEE.
    [25] Zhang, S., Guo, S., Gao, B., Hirata, H., & Ishihara, H. (2015). Design of a novel telerehabilitation system with a force-sensing mechanism. Sensors, 15(5), 11511-11527.
    [26] Katsura, S., Irie, K., & Ohishi, K. (2008). Wideband force control by position-acceleration integrated disturbance observer. IEEE Transactions on Industrial Electronics, 55(4), 1699-1706.
    [27] Gupta, A., & O’Malley, M. K. (2011). Disturbance-observer-based force estimation for haptic feedback.
    [28] Tobergte, A., & Helmer, P. (2013, November). A disturbance observer for the sigma. 7 haptic device. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4964-4969). IEEE.
    [29] Hogan, N. (1984, June). Impedance control: An approach to manipulation. In 1984 American control conference (pp. 304-313). IEEE.
    [30] Van der Linde, R. Q., Lammertse, P., Frederiksen, E., & Ruiter, B. (2002, July). The HapticMaster, a new high-performance haptic interface. In Proc. Eurohaptics (pp. 1-5). Edinburgh University.
    [31] Peer, A., & Buss, M. (2008). A new admittance-type haptic interface for bimanual manipulations. IEEE/ASME Transactions on mechatronics, 13(4), 416-428.
    [32] Zhang, H., Zhang, Y., Wang, D., & Lu, L. (2017, June). Dentaltouch: A haptic display with high stiffness and low inertia. In 2017 IEEE World Haptics Conference (WHC) (pp. 388-393). IEEE.
    [33] 黃聖元 (2020)。「新型平移式並聯機構之設計與分析」,成功大學機械工程學系碩士學位論文
    [34] THK Inc. " 交叉滾柱軸環 綜合產品目錄 " Available: http://tech.thk.com/cs/produ-cts/pdf_download.php?file=510C_18_CrossRollerRing.pdf [Accessed: June 15, 2021]
    [35] MISUMI Group Inc. "小徑滾珠軸承 兩側密封式" Available: https://tw.misumi-ec.c-om/vona2/detail/110300107560/?KWSearch=%e5%b0%8f%e5%be%91%e6%bb%be%e7%8f%a0%e8%bb%b8%e6%89%bf%20%e5%85%a9%e5%81%b4%e5%af%86-%e5%b0%81%e5%bc%8f&searchFlow=results2products [Accessed: June 15, 2021]
    [36] THK Inc. " Dimensional Drawing, Dimensional Table - Model RU " Available: https://tech.thk.com/en/products/pdf/en_a18_022.pdf [Accessed: June 15, 2021]
    [37] OPTEX FA Co., LTD " FASTUS CD22 Series " Available: http://www.optex-fa.com/p-roducts/dsp_sensor/cd22/index4.html [Accessed: June 15, 2021]
    [38] KEYENCE Inc. " CCD Laser Displacement Sensor LK Series " Available: https://www.keyence.com.tw/products/measure/laser-1d/lk/models/lk-081/?search_dl=1 [Accessed:June 15, 2021]
    [39] OP MOUNT Inc. " M-MTP90-100-C7 " Available: http://www.opmount.com.tw/cht/P-oduct_detail/487/289.html [Accessed: June 15, 2021]
    [40] FUTEK Inc. " LSB200 Series – FSH00107 " Available: https://www.futek.com/store/l-egacy-sensors-and-instruments/miniature-s-beam-LSB200/FSH00107 [Accessed: Ju-ne 15, 2021]
    [41] 卓孟寬 (2020)。「平移式並聯工具機之運動與動力分析」,成功大學機械工程學系碩士學位論文
    [42] 徐嘉佑 (2012)。「具兩共置撓性驅動軸機器手腕之動力與控制」,成功大學機械工程學系碩士學位論文。
    [43] Dombre, E., Duchemin, G., Poignet, P., & Pierrot, F. (2003). Dermarob: A safe robot for reconstructive surgery. IEEE Transactions on Robotics and Automation, 19(5), 876-884.
    [44] 吳冠毅 (2018)。「肘外甲機器之串聯彈性致動機構與驅動控制器設計」,成功大學機械工程學系碩士學位論文。
    [45] 蘇胤毓 (2019)。「具串聯彈性致動與錯位適應之前臂復健機器人設計」,成功大學機械工程學系碩士學位論文。
    [46] Orientalmotor Co., LTD " Stepper Motors (Motor Only) - PKP Series 2-Phase " Available: https://www.orientalmotor.com.tw/products/st/list/detail/?product_name=PKP214D06A-R2EL%2BLCE08A-006&brand_tbl_code=ST&series_code= GCG0& type_code=2%E7%9B%B8_%E6%A8%99%E6%BA%96%E5%9E%8B_%E9%99%84%E7%B7%A8%E7%A2%BC%E5%99%A8_s [Accessed: June 15, 2021]
    [47] Orientalmotor Co., LTD " Stepper Motors (Motor Only) - PKP Series 2-Phase " Available: https://www.orientalmotor.com.tw/products/st/list/detail/?product_name=PKP225D15A2-R2EL-L&brand_tbl_code=ST&series_code=GC00&type_code= [Ac-cessed: June 15, 2021]
    [48] Maxon Group " DC motors - RE Program " Available: https://www.maxongroup.com/maxon/view/product/273752 [Accessed: June 15, 2021]
    [49] MISUMI Group Inc. "滾珠螺桿選定指南" Available: https://tw.misumi-ec.com/pdf/fa/2019/p489_p2955.pdf [Accessed: June 15, 2021]
    [50] Renishaw Inc. " ATOMTM光學尺系列" Available: https://www.renishaw.com.tw/tw/atom-encoder-series—37564 [Accessed: June 15, 2021]
    [51] HIWIN Inc. " MG系列 微小型線性滑軌" Available: https://www.hiwin.tw/products/linear_guideway/mg.aspx [Accessed: June 15, 2021]
    [52] MISUMI Group Inc. "迷你線性滑軌 標準滑塊/輕預壓・微小間隙" Available: https://tw.misumi-ec.com/vona2/detail/110302586530/ [Accessed: June 15, 2021]
    [53] MISUMI Group Inc. "迷你線性滑軌 短滑塊/輕預壓・微小間隙" Available: https://t-w.misumi-ec.com/vona2/detail/110300042210/ [Accessed: June 15, 2021]
    [54] 郭彧伶 (2019)。「具兩維可調式定力輸出之力量控制機構設計」,成功大學機械工程學系碩士學位論文。
    [55] Lan, C. C., & Cheng, Y. J. (2008). Distributed shape optimization of compliant mechanisms using intrinsic functions. Journal of Mechanical Design, 130(7).
    [56] Lan, C. C., & Lee, K. M. (2006). Generalized shooting method for analyzing compliant mechanisms with curved members. Journal of Mechanical Design 128.4 (2006): 765-775.
    [57] Bodson, M., Chiasson, J. N., Novotnak, R. T., & Rekowski, R. B. (1993). High-performance nonlinear feedback control of a permanent magnet stepper motor. IEEE Transactions on Control Systems Technology, 1(1), 5-14.
    [58] Nollet, F., Floquet, T., & Perruquetti, W. (2008). Observer-based second order sliding mode control laws for stepper motors. Control engineering practice, 16(4), 429-443.
    [59] Ohmae, T., Matsuda, T., Kamiyama, K., & Tachikawa, M. (1982). A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives. IEEE Transactions on Industrial Electronics, (3), 207-211.
    [60] Tsuji, T., Hashimoto, T., Kobayashi, H., Mizuochi, M., & Ohnishi, K. (2008). A wide-range velocity measurement method for motion control. IEEE Transactions on industrial electronics, 56(2), 510-519.
    [61] 林靜慧 (2020)。「使用按需輔助控制器於機器人輔助之完整前臂復健訓練」,成功大學機械工程學系碩士學位論文。
    [62] Lee, S. H., & Song, J. B. (2001). Acceleration estimator for low-velocity and low-acceleration regions based on encoder position data. IEEE/ASME transactions on mechatronics, 6(1), 58-64.
    [63] 李育昇 (2020)。「以串聯彈性致動器呈現任意穩定虛擬勁度」,成功大學機械工程學系碩士學位論文。
    [64] Texas Instruments Inc. " OPA548 High-Voltage, High-Current, Wide-Output-Voltage-Swing Power Operational Amplfier " Available: https://www.ti.com/product/ OPA548? keyMatch=OPA548&tisearch=Search-EN-everything&usecase=GPN [Accessed: Jun-e 15, 2021]
    [65] WACOH-TECH Inc. " Capacitive 6-axis force sensor " Available: https://wacohtech.com/en/products/dynpick/200n_500n_rcdb.html [Accessed: June 15, 2021]
    [66] 林奎佑 (2019)。「使用步進馬達於直線串聯彈性致動器的準確力量及阻抗控制」,成功大學機械工程學系碩士學位論文
    [67] Chandler, R. F., Clauser, C. E., McConville, J. T., Reynolds, H. M., & Young, J. W. (1975). Investigation of inertial properties of the human body. Air Force Aerospace Medical Research Lab Wright-Patterson AFB OH.
    [68] Oriental motor Co., LTD " PKP214D06A-R2EL轉速–轉矩特性圖" Available: https://www.orientalmotor.com.tw/products_file/st/image/tct_pkp214d06a-r2el_d.gif [Acces- sed: June 15, 2021]
    [69] Oriental motor Co., LTD " PKP225D15A2-R2EL轉速–轉矩特性圖" Available: https://www.orientalmotor.com.tw/products_file/st/image/tct_pkp225d15a2-r2el_d.gif [Ac- cessed: June 15, 2021]
    [70] De Keyser, R., Ionescu, C. M., & Festila, C. (2011, December). A one-step procedure for frequency response estimation based on a Switch-Mode Transfer Function Analyzer. In 2011 50th IEEE Conference on Decision and Control and European Control Conference (pp. 1189-1194). IEEE.
    [71] Kwon, D. S., & Woo, K. Y. (2000, November). Control of the haptic interface with friction compensation and its performance evaluation. In Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000)(Cat. No. 00CH37113) (Vol. 2, pp. 955-960). IEEE.
    [72] Olsson, H., Åström, K. J., De Wit, C. C., Gäfvert, M., & Lischinsky, P. (1998). Friction models and friction compensation. Eur. J. Control, 4(3), 176-195.
    [73] Kumičáková, D., Tlach, V., & Císar, M. (2016). Testing the performance characteristics of manipulating industrial robots.
    [74] ISO 9283:1998 "Manipulating industrial robots - Performance criteria and related test methods" Available: https://www.iso.org/standard/22244.html [Accessed: June 15, 20-21]
    [75] Orientalmotor Co., LTD " Linear actuators (with absolute sensor) - DRSⅡ Series " Available: https://www.orientalmotor.com.tw/products/limo/list/detail/?product_name=DRSM42LG-04B2AZAK%2BAZD-K%2BCC010VZR2&brand_tbl_code= LM&s-eries_code =SO00&type_code=component&driver_type=%E8%84%88%E6%B3%A2%E5%88%97%E8%BC%B8%E5%85%A5%E5%9E%8B [Accessed: July 25, 2021]
    [76] Mehling, J. S. (2015). Impedance control approaches for series elastic actuators (Doctoral dissertation, Rice University).

    無法下載圖示 校內:2026-10-22公開
    校外:2026-10-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE