簡易檢索 / 詳目顯示

研究生: 李泱儒
Li, Yang-Ju
論文名稱: 多層薄膜熱擴散分析研究
Analysis of Thermal Diffusivity of Multi-layered Thin Film specimens
指導教授: 林仁輝
Lin, Jen-Fin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 89
中文關鍵詞: 薄膜熱擴散係數
外文關鍵詞: thin film, thermal diffusivity
相關次數: 點閱:129下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對微奈米尺度之多層薄膜的熱擴散係數進行量測與分析。本研究之薄膜樣本為兩層堆疊之薄膜,並鍍製於不鏽鋼金屬基板上,每層薄膜的熱傳導性質皆不相同,且薄膜尺度極小,其熱傳行為將會深受尺度效應以及界面熱阻的影響,因此一般傳統量測方法已不適用。在薄膜的量測上,本研究使用溫度震盪法作為量測熱擴散係數的方法,不同於量測兩界面溫差推導其熱傳性質,而是以兩界面感測到溫度的時間差來做熱傳性質之推導。溫度震盪法實驗建立時,需要可輸出穩定震盪波的熱源,精準的溫度擷取設備,以及配合理論解設計實驗為一維之熱傳。本研究使用致冷片搭配555震盪電路作為熱源,配合自製之散熱夾具作為散熱系統,可輸出穩定震盪波,並達成一維熱傳之實驗設計。固定於致冷片上方之薄膜試片輸入熱源後,不同界面上使用熱電偶感受到的溫度震盪波將會產生相位差,但此相位差卻包含兩熱電偶與界面接觸狀況不相同所造成之誤差,因此本研究設計出變頻率法實驗,找出此誤差。但在使用變頻率法做量測時,熱飄移會造成另一誤差,在第三根熱電偶的加入後,可將其中兩熱電偶至於同界面上偵測此誤差。在這些誤差的扣除後即可找出材料之熱傳性質。此法之優點為便宜簡單,且屬於非破壞性檢測方法。

    In the present study, the thermal diffusivities (α) of all film layers and the substrate of two multi-layered specimens are evaluated and compared with the reported results in literatures. First of all, the heat conduction solution in the multi-layered specimens is developed to be one-dimensional and varying with the amplitude and frequency of the oscillating temperature imposed by the Peltier beneath the specimen’s substrate. Then, there exists different temperature phase lag at every layer including the substrate w.r.t. the temperature of the peltier. The difference in the temperature phase lag between the top and bottom surfaces of each layer can be expressed as a function of film thickness (d), oscillating temperature frequency (ω) and thermal diffusivity (α) of this layer. A heating container of specimen is appropriately designed with a ventilation system for peltier such that the oscillating temperature at everywhere of the specimen is ensured to be operating one-dimensional, steady-state condition. Two of three thermocouples are placed to have their tip in contact with the top surfaces of two adjacent layers individually in order to measure the phase lag occurring in the layer between these two surfaces. The third thermocouple can be placed on either of these two top surfaces in order to evaluate the error of phase lag due to the use of two different channels of signal acquisition system. The difference between the above two phase lags is defined as the real phase lag of this layer. This phase lag value is then substituted into the previously developed phase lag expression to determine the thermal diffusivity of the layer. The thermal diffusivities of all layers in the multilayered specimens determined by the present theoretical model and experimental method have been confirmed to be close to those reported in the literatures.

    目錄 第一章 緒論 1 1.1 前言 1 1.2 研究目的 1 1.3 研究內容 2 1.4 文獻回顧 3 第二章 基礎理論 9 2.1 微觀熱傳導 9 2.2 薄膜尺度效應(size effect) 11 2.3 溫度對熱傳導係數的影響[13] 14 2.4 界面熱阻(interfacial thermal resistance) 17 第三章 實驗理論與架構 20 3.1 實驗理論 20 3.2 實驗方法與架構 23 第四章 實驗結果與討論 29 4.1 多層膜試片結構 29 4.2 輸出穩定溫度震盪波 33 4.3 實驗過程 39 4.4 變頻率方法 44 4.5 熱飄移誤差之修正 46 4.6 多層膜熱擴散係數之量測 53 4.7 實驗方法驗證 65 4.8 變頻率法對塊材量測 74 4.9 加入第三根熱電偶接於欲量測材料表面之量測結果 78 第五章 結論與未來展望 83 1.藉由此方法可克服熱電偶溫度擷取差異性問題: 83 2.此法在做溫度震盪曲線擬合時需趨勢平穩: 83 3.變頻率法之分析: 84 4.修正熱飄移誤差: 85 5.總結 85 6.未來展望 86 參考文獻 88

    1. D. G. Cahill,” HEAT TRANSPORT IN DIELECTRIC THIN FILMS AND AT SOLID-SOLID INTERFACES”, Microscale Thermophysical. Eng., pp.85-109, 1997
    2. E. Jansen and E Obermeier,” Thermal conductivity measurements on thin films based on micromechanical devices”, J. Micromech. Microeng., 6,pp. 118–121,1996
    3. D. G. Cahill,” Thermal conductivity measurement from 30 to 750 K: the 3ω method”, J. Appl. Phys., Vol.91, pp.802-808,1989
    4. O. W. KÈading, H. Shurk, and K. E. Goodson, Thermal Conduction in Me tallized Silicon-Dioxide Laye rs on Silicon, Appl. Phys. Lett., 65, pp. 1629-1631, 1994
    5. A. J. Ångstrom, Ann. Phys. , vol. 114, pp. 513, 1861.
    6. T. Yagi, K. Tamano, and Y. Sato,” Analysis on thermal properties of tin doped indium oxide films by picosecond thermoreflectance measurement”, J. Vac. Sci. Technol.A,23(4), 2005
    7. A. Salazar, A. Stinchez-Lavega, and J. Fern&tndez,”Thermal diffusivity measurements in solids by the ‘‘mirage’’,technique: Experimental results”, J. Appl. Phys. 69,pp.1216-1223,1991
    8.C. William,“Materials Science and Engineering - An Introduction.”, John Wiley & Sons, INC.,2003
    9. H. David; R. Robert and W. Jearl. “Fundamentals of Physics “,5th ed, John Wiley and Sons, INC., 1997
    10.J.M. Ziman,”Electrons and phonons”, Oxford University Press, London,1960
    11. Z. M. Zhang,” NANO/MICROSCALE HEAT TRANSFER”,The McGraw-Hill Companies Inc.,2007
    12.G. P. Srivastava, “The Physics of Phonons”, Adam Hilger, IOP Publishing Ltd, Bristol,1990
    13.簡恆傑,”微奈米尺度薄膜之熱傳導量測方法研究開發”,國立清華大學工程與系統科學所博士論文,2010
    14. R. J. Stevens , L. V. Zhigilei , P. M. Norris ,” Effects of temperature and disorder on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics simulations”, International Journal of Heat and Mass Transfer, 50,pp. 3977–3989, 2007
    15. Alberto Muscio, Paolo G. Bison, Sergio Marinetti, Ermanno Grinzato,” Thermal diffusivity measurement in slabs using harmonic and one-dimensional propagation of thermal waves”, International Journal of Thermal Sciences,43,pp.453-463,2004
    16. Toru Ashida, Amica Miyamura, Nobuto Oka, Yasushi Sato, Takashi Yagi,” Thermal transport properties of polycrystalline tin-doped indium oxide films”, J. Appl. Phys.,105,073709,2009
    17. Ichiro Hatta, Yasunaga Sasuga, Ryozo Kato, and Akikazu Maesono,” Thermal diffusivity measurement of thin films by means of an ac calorimetric method”, Rev. Sci. Instrum. ,56,pp.1643-1647,1985
    18. Y. S. Touloukian, R. W. Powell, C. Y. Ho, and M. C. Nicolaou, “Thermophysical Properties of Matter, Thermal DifJusivity”, TPRC Data Services (IFI/Plenum, New York,),10,pp.160,1973

    無法下載圖示 校內:2022-12-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE