簡易檢索 / 詳目顯示

研究生: 林庭瑄
Lin, Ting-Hsuan
論文名稱: 以生物礦化結合層層自組裝浸泡法製備具無機/有機複合液胞結構之抗反射薄膜
Synthesis of Antireflective Composite Coatings by Silica Mineralization of Layer-by-Layer Assembled Thin Films Comprising Vesicular Nanostructures
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 111
中文關鍵詞: 層層堆疊法雙親性高分子奈米液胞複合抗反射薄膜生物礦化法
外文關鍵詞: antireflective coatings, layer-by-layer assembly, vesicle, silica mineralization
相關次數: 點閱:89下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇研究中,我們製備兩種不同的抗反射薄膜系統,第一種為PS-b-PLL抗反射薄膜系統,而第二個抗反射系統則為PDMA-b-TFPM抗反射系統,此兩種系統皆利用層層堆疊法結合浸泡的方式,並搭配生物礦化法的步驟製備結構為多孔且連續的抗反射薄膜。透過兩類不同的雙親性高分子以奈米沉澱與透析法於水溶液中自組裝形成帶正電的奈米液胞,並與負電高分子材料聚穀胺酸(PGA)相互吸引形成穩定的純高分子薄膜,接著,再將此高分子薄膜浸入濃度為0.35M的TMOS水溶液內,藉由高分子內親水鏈段中的正電荷進行二氧化矽的水解與縮合反應,使二氧化矽沉析於高分子薄膜內而形成高分子/二氧化矽複合薄膜。
    利用不同的雙親性高分子之親疏水組成比例,形成富含空氣的中空奈米液胞,並藉由調控抗反射薄膜的堆疊層數、高分子溶液的pH值與沉析二氧化矽,來達成控制抗反射薄膜折射率的目標,其中第一個抗反射薄膜系統以塗佈4層(PS100-b-PLL50/PGA75)n/Silica的抗反射效果最佳,在可見光波段下,塗佈(PS100-b-PLL50/PGA75)4/Silica於PMMA基材上的穿透度可超過97%,且此抗反射系統的薄膜可通過膠帶測試,顯示第一種抗反射薄膜具有良好的貼附性;第二個抗反射系統則以塗佈8或10層(PDMA20-b-TFPM43/PGA138)n/Silica的抗反射效果較佳,(PDMA20-b-TFPM43/PGA138)10/Silica在PMMA基材上的穿透度高於空白基材,其穿透度可超過97%,且第二個抗反射薄膜系統不僅可抵抗膠帶的作用力,更可通過低溫耐候性的檢測,代表第二種抗反射系統的薄膜可同時具有良好的抗反射效果、穩定的貼附性與低溫的耐候性。總和上述,以此方法所製備的抗反射薄膜具有許多優點,使其應用性增廣而可能得以進行商品化的開發。

    With the rapid development of science and technology, antireflective coatings (ARCs) had been widely used in many applications that can bring smart and convenient life to us. We exploited a simple method to prepare highly transparent polymer/silica composite AR films by combining silica mineralization and layer-by-layer (LbL) assembly. In this study, we synthesized two different types of amphiphilic polymer to make two ARC systems. By means of using nanoprecipitation and dialysis process, amphiphilic polymers can self-assemble to form positively charged vesicles and LbL assembled with negatively charged poly(L-glutamic acid) (PGA) to form multilayer films. Then silica mineralization was carried out in the multilayer films through amine-catalyzed polycondensation. According to the experimental results, the maximum transmission of (PS100-b-PLL50/PGA75)4/Silica and (PDMA20-b-TFPM43/PGA138)10/Silica coated onto PMMA substrates can be both higher than 97% at the visible wavelength. Furthermore, the AR composite films had adhesive stability proven by adhesion test. This research shows a facile and benign approach to prepare conformal films with excellent AR chracteristics.

    摘要 I Extended Abstract III 致謝 XI 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 第二章 文獻回顧 4 2.1抗反射薄膜之起源與發展歷程 4 2.1.1在生物界中的抗反射薄膜 4 2.1.2抗反射薄膜之光學理論 6 2.2抗反射薄膜的設計 9 2.2.1抗反射薄膜的型態 9 2.2.2抗反射薄膜的製程技術 11 2.3應用於抗反射薄膜的材料 14 2.3.1應用於抗反射薄膜的高分子材料 14 2.3.2應用於抗反射薄膜的無機材料 15 2.4雙親性高分子之自組裝行為 16 2.5生物礦化作用 18 第三章 實驗方法與儀器設備 19 3.1實驗藥品 19 3.2聚穀氨酸(PGA)與聚賴胺酸(PLL)之合成 22 3.2.1溶劑之乾燥 22 3.2.2起始劑之製備 23 3.2.3製備α-amino acid N-carboxyanhydrides (NCAs) 23 3.2.4以有機鎳作為起始劑對胺基酸進行開環聚合反應 25 3.2.5 移除聚胺基酸高分子的保護基 25 3.2.6 合成嵌段共聚高分子polystyrene-b-poly(L-lysine) (PS-b-PLL與PS2-b-PLL) 27 3.3雙親性嵌段共聚高分子(PDMA-b-TFPM)之合成 30 3.4高分子/二氧化矽奈米複合抗反射薄膜製程 32 3.4.1玻璃基材的表面清潔 32 3.4.2 對壓克力基材(PMMA)的電漿表面改質 33 3.4.3 製備高分子奈米粒子 33 3.4.4 層層堆疊法結合浸泡法製程 33 3.4.5 製備二氧化矽/高分子複合抗反射薄膜 35 3.5實驗儀器原理與待測樣品的製備 35 3.5.1薄膜量測儀 35 3.5.2紫外光/可見光譜儀 37 3.5.3場發射掃描式電子顯微鏡 37 3.5.4穿透式電子顯微鏡 39 3.5.5原子力顯微鏡 40 3.5.6液態核磁共振儀 40 3.5.7凝膠滲透層析儀 41 3.5.8紅外線光譜儀 42 3.5.9圓二色光譜儀 43 3.5.10動態光散射偵測儀與介達電位分析儀 43 3.5.11接觸角測定儀 44 第四章 結果與討論 46 4.1雙親性嵌段共聚高分子之合成結果鑑定與分析 48 4.1.1 PS-b-PLL與PS2-b-PLL抗反射系統之高分子合成結果鑑定與分析 48 4.1.2 PDMA-b-TFPM抗反射系統之高分子合成結果鑑定與分析 52 4.2雙親性嵌段共聚高分子自組裝形成奈米液胞之結果鑑定與分析 55 4.2.1 PS-b-PLL與PS2-b-PLL高分子自組裝形成奈米液胞之結果鑑定與分析 55 4.2.2 PDMA-b-TFPM高分子自組裝形成奈米液胞之結果鑑定與分析 60 4.3 層層堆疊結合浸泡法製備抗反射薄膜之結果分析 62 4.3.1 PS-b-PLL與PS2-b-PLL抗反射薄膜的結構分析 62 4.3.2 PS-b-PLL與PS2-b-PLL抗反射薄膜的光學性質分析 74 4.3.3 PS-b-PLL與PS2-b-PLL抗反射薄膜的貼附性分析 77 4.3.4 PDMA-b-TFPM抗反射薄膜的結構分析 78 4.3.5 PDMA-b-TFPM抗反射薄膜的光學性質分析 87 4.3.6 PDMA-b-TFPM抗反射薄膜的貼附性與耐候性分析 95 第五章 結論與未來展望 99 第六章 參考文獻 102

    1. Fraunhofer, J. V., Versuche über die Ursachen des Anlaufens und Mattwerdens des Glases und die Mittel, denselben zuvorzukommen. J. von Fraunhofer’s Gesammelte Schriften, Verlag der K. Akademie, Munich 1888.

    2.Rayleigh, L., On reflection of vibrations at the confines of two media between which the transition is gradual. Proceedings of the London Mathematical Society 1879, 1 (1), 51-56.

    3.Taylor, H. D., A method of increasing the brilliancy of the images formed by lenses. British patent 1904, 29561.

    4.Yao, L.; He, J., Recent progress in antireflection and self-cleaning technology – From surface engineering to functional surfaces. Progress in Materials Science 2014, 61, 94-143.

    5.Morikawa, J.; Ryu, M.; Seniutinas, G.; Balcytis, A.; Maximova, K.; Wang, X.; Zamengo, M.; Ivanova, E. P.; Juodkazis, S., Nanostructured Antireflective and Thermoisolative Cicada Wings. Langmuir 2016, 32 (18), 4698-703.

    6.Stavenga, D. G.; Foletti, S.; Palasantzas, G.; Arikawa, K., Light on the moth-eye corneal nipple array of butterflies. Proc Biol Sci 2006, 273 (1587), 661-7.

    7.Dellieu, L.; Sarrazin, M.; Simonis, P.; Deparis, O.; Vigneron, J. P., A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera). Journal of Applied Physics 2014, 116 (2), 024701.

    8.Born, M.; Wolf, E., Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Elsevier: 2013.

    9.Macleod, H. A., Thin-film optical filters. CRC press: 2001.

    10.Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S., Anti-reflective coatings: A critical, in-depth review. Energy & Environmental Science 2011, 4 (10), 3779.

    11.Buskens, P.; Burghoorn, M.; Mourad, M. C.; Vroon, Z., Antireflective Coatings for Glass and Transparent Polymers. Langmuir 2016, 32 (27), 6781-93.

    12.Southwell, W. H., Gradient-index antireflection coatings. Optics letters 1983, 8 (11), 584-586.

    13.Sheldon, B.; Haggerty, J.; Emslie, A., Exact computation of the reflectance of a surface layer of arbitrary refractive-index profile and an approximate solution of the inverse problem. JOSA 1982, 72 (8), 1049-1055.

    14.蕭宏, 半導體製程技術導論. 台灣培生教育: 2007.

    15.Pearton, S. J.; Norton, D. P., Dry Etching of Electronic Oxides, Polymers, and Semiconductors. Plasma Processes and Polymers 2005, 2 (1), 16-37.

    16.Decher, G.; Hong, J. D. In Buildup of ultrathin multilayer films by a self‐assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces, Makromolekulare Chemie. Macromolecular Symposia, Wiley Online Library: 1991; pp 321-327.

    17.De Geest, B. G.; Sanders, N. N.; Sukhorukov, G. B.; Demeester, J.; De Smedt, S. C., Release mechanisms for polyelectrolyte capsules. Chem Soc Rev 2007, 36 (4), 636-49.

    18.Richardson, J. J.; Cui, J.; Björnmalm, M.; Braunger, J. A.; Ejima, H.; Caruso, F., Innovation in Layer-by-Layer Assembly. Chemical Reviews 2016, 116 (23), 14828-14867.

    19.Decher, G., Fuzzy nanoassemblies: toward layered polymeric multicomposites. science 1997, 277 (5330), 1232-1237.

    20.Manabe, K.; Nishizawa, S.; Kyung, K.-H.; Shiratori, S., Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films. ACS Applied Materials & Interfaces 2014, 6 (16), 13985-13993.

    21.Zhang, L.; Qiao, Z.-A.; Zheng, M.; Huo, Q.; Sun, J., Rapid and substrate-independent layer-by-layer fabrication of antireflection- and antifogging-integrated coatings. Journal of Materials Chemistry 2010, 20 (29), 6125.

    22.Zhang, L.; Li, Y.; Sun, J.; Shen, J., Mechanically stable antireflection and antifogging coatings fabricated by the layer-by-layer deposition process and postcalcination. Langmuir 2008, 24 (19), 10851-10857.

    23.Han, J.; Dou, Y.; Wei, M.; Evans, D. G.; Duan, X., Antireflection/antifogging coatings based on nanoporous films derived from layered double hydroxide. Chemical Engineering Journal 2011, 169 (1-3), 371-378.

    24.Lee, Y. L.; Lin, T. X.; Hsu, F. M.; Jan, J. S., Synthesis of antireflective silica coatings through the synergy of polypeptide layer-by-layer assemblies and biomineralization. Nanoscale 2016, 8 (4), 2367-77.

    25.Thompson, C. S.; Fleming, R. A.; Zou, M., Transparent self-cleaning and antifogging silica nanoparticle films. Solar Energy Materials and Solar Cells 2013, 115, 108-113.

    26.Sun, J.; Cui, X.; Zhang, C.; Zhang, C.; Ding, R.; Xu, Y., A broadband antireflective coating based on a double-layer system containing mesoporous silica and nanoporous silica. Journal of Materials Chemistry C 2015, 3 (27), 7187-7194.

    27.Yun, J.; Bae, T. S.; Kwon, J. D.; Lee, S.; Lee, G. H., Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition. Nanoscale 2012, 4 (22), 7221-30.

    28.Chen, J.; Zhang, L.; Zeng, Z.; Wang, G.; Liu, G.; Zhao, W.; Ren, T.; Xue, Q., Facile fabrication of antifogging, antireflective, and self-cleaning transparent silica thin coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2016, 509, 149-157.

    29.Fujima, T.; Futakuchi, E.; Tomita, T.; Orai, Y.; Sunaoshi, T., Hierarchical nanoporous glass with antireflectivity and superhydrophilicity by one-pot etching. Langmuir 2014, 30 (48), 14494-7.

    30.Li, J.; Zhu, J.; Gao, X., Bio-inspired high-performance antireflection and antifogging polymer films. Small 2014, 10 (13), 2578-82.

    31.Morhard, C.; Pacholski, C.; Lehr, D.; Brunner, R.; Helgert, M.; Sundermann, M.; Spatz, J. P., Tailored antireflective biomimetic nanostructures for UV applications. Nanotechnology 2010, 21 (42), 425301.

    32.Dutriez, C.; Satoh, K.; Kamigaito, M.; Yokoyama, H., Cross-linked nanocellular polymer films: water- and oil-repellent anti-reflection coating. Polymer Journal 2016, 48 (4), 497-501.

    33.Cho, J.; Hong, J.; Char, K.; Caruso, F., Nanoporous block copolymer micelle/micelle multilayer films with dual optical properties. Journal of the American Chemical Society 2006, 128 (30), 9935-9942.

    34.Ibn-Elhaj, M.; Schadt, M., Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies. Nature 2001, 410 (6830), 796-9.

    35.Ye, C.; Vogt, B. D., Nanoporous block copolymer films using highly selective solvents and non-solvent extraction. Soft matter 2015, 11 (43), 8499-8507.

    36.Li, X.; Yu, X.; Han, Y., Polymer thin films for antireflection coatings. Journal of Materials Chemistry C 2013, 1 (12), 2266.

    37.Hanaei, H.; Assadi, M. K.; Saidur, R., Highly efficient antireflective and self-cleaning coatings that incorporate carbon nanotubes (CNTs) into solar cells: A review. Renewable and Sustainable Energy Reviews 2016, 59, 620-635.

    38.Vahanian, E.; Yavrian, A.; Gilbert, R.; Galstian, T., Enhancement of the electrical response in high concentrating photovoltaic systems by antireflective coatings based on silica nanoparticles. Solar Energy 2016, 137, 273-280.

    39.Meng, X.; Wang, Y.; Wang, H.; Zhong, J.; Chen, R., Preparation of hydrophobic and abrasion-resistant silica antireflective coatings by using a cationic surfactant to regulate surface morphologies. Solar Energy 2014, 101, 283-290.

    40.Yadav, H. M.; Kim, J.-S., Fabrication of SiO2/TiO2 double layer thin films with self-cleaning and photocatalytic properties. Journal of Materials Science: Materials in Electronics 2016, 27 (10), 10082-10088.

    41.Li, Y.; Yang, K.; Xia, B.; Yang, B.; Yan, L.; He, M.; Yan, H.; Jiang, B., Preparation of mechanically stable triple-layer interference broadband antireflective coatings with self-cleaning property by sol–gel technique. RSC Adv. 2017, 7 (24), 14660-14668.

    42.Lu, J.-H.; Luo, J.-W.; Chuang, S.-R.; Chen, B.-Y., Antireflection coatings with SiOx–TiO2 multilayer structures. Japanese Journal of Applied Physics 2014, 53 (11S), 11RA06.

    43.Mazur, M.; Wojcieszak, D.; Kaczmarek, D.; Domaradzki, J.; Song, S.; Gibson, D.; Placido, F.; Mazur, P.; Kalisz, M.; Poniedzialek, A., Functional photocatalytically active and scratch resistant antireflective coating based on TiO2 and SiO2. Applied Surface Science 2016, 380, 165-171.

    44.Murata, T.; Ishizawa, H.; Motoyama, I.; Tanaka, A., Preparation of high-performance optical coatings with fluoride nanoparticle films made from autoclaved sols. Applied optics 2006, 45 (7), 1465-1468.

    45.Raut, H. K.; Dinachali, S. S.; Ansah-Antwi, K. K.; Ganesh, V. A.; Ramakrishna, S., Fabrication of highly uniform and porous MgF2 anti-reflective coatings by polymer-based sol–gel processing on large-area glass substrates. Nanotechnology 2013, 24 (50), 505201.

    46.Ding, R.; Cui, X.; Zhang, C.; Zhang, C.; Xu, Y., Tri-wavelength broadband antireflective coating built from refractive index controlled MgF2 films. Journal of Materials Chemistry C 2015, 3 (13), 3219-3224.

    47.Bernsmeier, D.; Polte, J.; Ortel, E.; Krahl, T.; Kemnitz, E.; Kraehnert, R., Antireflective Coatings with Adjustable Refractive Index and Porosity Synthesized by Micelle-Templated Deposition of MgF2 Sol Particles. ACS Applied Materials & Interfaces 2014, 6 (22), 19559-19565.

    48.Whitesides, G. M.; Grzybowski, B., Self-assembly at all scales. Science 2002, 295 (5564), 2418-2421.

    49.Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures; DTIC Document: 1991.

    50.Israelachvili, J. N., Soft and Biological Structures. In Intermolecular and Surface Forces, 3 ed.; Academic Press: 2011; p 559.

    51.Karayianni, M.; Pispas, S., Self-Assembly of Amphiphilic Block Copolymers in Selective Solvents. In Fluorescence Studies of Polymer Containing Systems, Procházka, K., Ed. Springer International Publishing: Cham, 2016; pp 27-63.

    52.Xu, A.-W.; Ma, Y.; Cölfen, H., Biomimetic mineralization. J. Mater. Chem. 2007, 17 (5), 415-449.

    53.Colfen, H.; Mann, S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Ed Engl 2003, 42 (21), 2350-65.

    54.Fan, T.-X.; Chow, S.-K.; Zhang, D., Biomorphic mineralization: From biology to materials. Progress in Materials Science 2009, 54 (5), 542-659.

    55.Cölfen, H., Bio-inspired mineralization using hydrophilic polymers. In Biomineralization II, Springer: 2006; pp 1-77.

    56.Poulsen, N.; Sumper, M.; Kroger, N., Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc Natl Acad Sci U S A 2003, 100 (21), 12075-80.

    57.Jan, J.-S.; Lee, S.; Carr, C. S.; Shantz, D. F., Biomimetic synthesis of inorganic nanospheres. Chemistry of materials 2005, 17 (17), 4310-4317.

    58.Matyjaszewski, K., Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45 (10), 4015-4039.

    59.Kern, W., The Evolution of Silicon Wafer Cleaning Technology. J. Electrochem. Soc 1990, 137 (6).

    60.Njobuenwu, D. O.; Oboho, E. O.; Gumus, R. H., Determination of contact angle from contact area of liquid droplet spreading on solid substrate. Leonardo Electronic Journal of Practices and Technologies 2007, 10, 29-38.

    61.Boulmedais, F.; Bozonnet, M.; Schwinte, P.; Voegel, J.-C.; Schaaf, P., Multilayered polypeptide films: secondary structures and effect of various stresses. Langmuir 2003, 19 (23), 9873-9882.

    62.Vesterinen, A.; Lipponen, S.; Rich, J.; Seppälä, J., Effect of block composition on thermal properties and melt viscosity of poly [2-(dimethylamino) ethyl methacrylate], poly (ethylene oxide) and poly (propylene oxide) block co-polymers. Express Polymer Letters 2011, 5 (9).

    63.Valliant, E. M.; Jones, J. R., Softening bioactive glass for bone regeneration: sol–gel hybrid materials. Soft Matter 2011, 7 (11), 5083.

    64.Du, Y.; Luna, L. E.; Tan, W. S.; Rubner, M. F.; Cohen, R. E., Hollow silica nanoparticles in UV− visible antireflection coatings for poly (methyl methacrylate) substrates. ACS nano 2010, 4 (7), 4308-4316.

    65.Garnett, J. C. M., Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. A-Contain. Pap. Math. Phys. Character 1904, 203, 385-420.

    66.Garnett, J. C. M., Colours in metal glasses, in metallic films, and in metallic solutions - II. Philos. Trans. R. Soc. Lond. A-Contain. Pap. Math. Phys. Character 1906, 205, 237-288.

    67.Bruggeman, D. A. G., Calculation of various physics constants in heterogenous substances I Dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys.-Berlin 1935, 24 (7), 636-664.

    68.Yoldas, B. E., Investigations of porous oxides as an antireflective coating for glass surfaces. Applied Optics 1980, 19 (9), 1425-1429.

    69.Yoldas, B. E.; Partlow, D. P., Formation of broad band antireflective coatings on fused silica for high power laser applications. Thin solid films 1985, 129 (1-2), 1-14.

    無法下載圖示 校內:2022-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE