簡易檢索 / 詳目顯示

研究生: 卓懷平
Cho, Huai-Ping
論文名稱: 利用電位誘導吸附法製備硒化鎘量子點敏化太陽能電池
Fabrication of CdSe Quantum Dot Sensitized Solar Cells with Photoelectrodes Prepared Using Potential-Induced Adsorption
指導教授: 李玉郎
Lee, Yuh-Lang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 61
中文關鍵詞: 電位誘導吸附法量子點敏化太陽能電池硒化鎘
外文關鍵詞: potential-induced adsorption, quantum dot-sensitized solar cell, cadmium selenide
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 連續離子層吸附與反應(Successive ionic layer adsorption and reaction, SILAR)為一廣泛使用在製備量子點敏化太陽能電池之方法,然而孔洞阻塞與不均勻的量子點分佈仍是待改善的問題。本研究利用電位誘導吸附法(Potential-induced adsorption, PA)將硒化鎘量子點沉積於二氧化鈦光電極上,以製備量子點敏化太陽能電池。藉由施加偏壓於光電極上,促進反應前驅物之滲透力,使鎘離子吸附於多孔性的二氧化鈦薄膜中,以增進後續所沉積之量子點。實驗中利用能量散佈分析儀來分析經PA程序之光電極的元素組成,並量測整體量子點敏化太陽能電池之效率。研究結果顯示,有施加偏壓所製備的光電極之鎘含量確實比未施加偏壓所製備的光電極高;而二氧化鈦薄膜中加入散射層,有助於提升硒化鎘量子點敏化太陽能電池之效率;在比較4 μm main layer + 4 μm散射層(4+4 μm)與 8+4 μm之二氧化鈦薄膜後,發現8+4 μm之二氧化鈦薄膜具有較大的容量來乘載量子點,雖然4+4 μm之二氧化鈦薄膜在少量硒化鎘量子點下組成之電池表現得較好;而以PA應用於硫化鎘/硒化鎘量子點共敏化太陽能電池的製備,電池之效率可達到4.82%。

    Successive ionic layer adsorption and reaction (SILAR) technique has been commonly adopted to fabricate quantum-dot-sensitized solar cells (QDSSCs). However, pore blocking and poor distribution of quantum dots (QDs) in TiO2 matrices are still problems need to be solved. A potential-induced adsorption (PA) of photoelectrodes was introduced to improve the deposition of cadmium selenide (CdSe) QDs and the performance of QDSSCs. The QDs deposited photoelectrode was characterized by energy dispersive spectrometer (EDS) in scanning electron microscope (SEM). The experimental results show that the PA greatly enhanced the ion adsorption, resulting in a higher amount of cadmium ions on the film surface for the following reaction with selenide precursors. In addition, TiO2 scattering layer was used to increase the light-trapping capabilities. A comparison of photoelectrodes with 4+4 μm TiO2 films and 8+4 μm TiO2 films was carried out to inspect the effects of the layers. The results show that both the efficiencies of the cell with the two different photoelectrodes increase with increasing SILAR cycles of CdSe. However, 8+4 μm TiO2 photoelectrodes have larger capacity to load more QDs while 4+4 μm TiO2 films performed better than those with 8+4 μm TiO2 films under small amount of CdSe QDs. A maximum efficiency of 4.82% was achieved by using PA improved co-sensitization of CdS/CdSe on 8+4 μm TiO2 photoelectrode.

    Contents 摘要 I Abstract II Acknowledgement III Contents IV List of Figures VI List of Tables VIII Chapter I. Introduction 1 1.1 Background 1 1.2 Motivation 2 Chapter II. Principles and Literature Review 3 2.1 DSSCs 3 2.1.1 Working principle 3 2.1.2 Conductive substrate 4 2.1.3 Semiconductor 4 2.1.4 Sensitizers 5 2.1.5 Electrolyte 6 2.1.6 Counter electrode 8 2.2 QDSSC 9 2.2.1 Semiconductor materials and QD 11 2.2.2 Electron charge transfer and transport processes 16 2.2.3 Electrolyte 18 2.2.4 Counter electrode 20 2.3 Synthesis of QDs 21 2.3.1 Chemical bath deposition (CBD) 21 2.3.2 Molecular assisted deposition 21 2.3.3 Electrophoretic deposition (EPD) 23 2.3.4 SILAR 23 2.4 Improvement in QDSSCs 24 Chapter III. Materials and Methods 29 3.1 Materials and chemicals 29 3.2 Instruments 29 3.2.1 Energy-dispersive X-ray spectroscopy (EDS) on the scanning electron microscope (SEM) 29 3.2.2 Solar simulator 30 3.3 Experiment procedure 34 Chapter IV. Results and Discussion 37 4.1 Comparative studies on the performance of CdSe QDSSCs prepared using Cd(NO3)2 and Cd(Ac)2 precursors 37 4.2 Performance of CdSe QDSSCs with PA improved photoelectrodes 40 4.3 Optimum TiO2 film thicknesses and layers for CdSe QD photoelectrodes 44 4.4 The performance of PA improved CdS/CdSe co-sensitized QDSSCs 49 4.4.1 Effects of CdS layers 49 4.4.2 Effects of CdSe layers 50 Chapter V. Conclusion 52 References 53

    1. A. Listorti, B. O’Regan, J. R. Durrant, Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chemistry of Materials 23, 3381-3399 (2011).
    2. M. Grätzel, Recent Advances in Sensitized Mesoscopic Solar Cells. Accounts of Chemical Research 42, 1788-1798 (2009).
    3. H. Liu, V. Avrutin, N. Izyumskaya, Ü. Özgür, H. Morkoç, Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices and Microstructures 48, 458-484 (2010).
    4. M. Grätzel, Photoelectrochemical cells. Nature 414, 338-344 (2001).
    5. Transparent Conductive Oxide Thin Films. Materion Technical Paper.
    6. B. O'Regan, M. Grätzel, A Low Cost, High Efficiency Solar Cell Based on Dye Sensitized Colloidal TiO2 Films. Nature 353, 767-740 (1991).
    7. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat Mater 4, 455-459 (2005).
    8. M. A. Hossain, J. R. Jennings, Z. Y. Koh, Q. Wang, Carrier Generation and Collection in CdS/CdSe-Sensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities. ACS Nano 5, 3172-3381 (2011).
    9. P. Guo, M. A. Aegerter, Ru(II) Sensitized Nb2O5 Solar Cell Made by the Sol-Gel Process. Thin Solid Films 351, 290-294 (1999).
    10. N. Sekar, V. Y. Gehlot, Metal Complex Dyes for Dye-Sensitized Solar Cells: Recent Developments. RESONANCE, 819-831 (2010).
    11. O. Kohle, M. Grätzel, A. F. Meyer, T. B. Meyer, The photovoltaic stability of, bis(isothiocyanato)rlutheniurn(II)-bis-2, 2′bipyridine-4, 4′-dicarboxylic acid and related sensitizers. Advanced Materials 9, 904-906 (1997).
    12. H. Rensmo,H. Lindström, S. Södergren, A. Willstedt, A. Solbrand, A. Hagfeldt, S. Lindquist, Photocurrent Losses in Nanocrystalline-Nanoporous TiO2 Electrodes Due to Electrochemically Active Species in the Electrolyte. J. Electrochem. Soc. 143, (1996).
    13. G. Wolfbauer, A. M. Bond, J. C. Eklund, D. R. MacFarlane, A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar Energy Materials & Solar Cells 70, 85-101 (2001).
    14. S. Thomas, T. G. Deepak, G. S.Anjusree, T. A. Arun, Shantikumar V. Nair, A. Sreekumaran Nair, A review on counter electrode materials in dye-sensitized solar cells. J. Mater. Chem. A 2, 4474-4490 (2014).
    15. M. Shalom, Z. Tachan, Y. Bouhadana, A. Zaban, Quantum Dots Based Photo-Electrochemical Solar Cells.
    16. Metal Chalcogenide Nanostructures for Renewable Energy Applications. (2014), pp. 320.
    17. W. W. Yu, X. Peng, Formation of High Quality CdS and Other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents Tunable Reactivity of Monomers. Angew. Chem. Int. Ed 41, 2368-2371 (2002).
    18. W. W. Yu, L. Qu, W. Guo, X. Peng, Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 15, 2854-2860 (2003).
    19. X. Michalet, F. F. Pinaud,L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G.Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 307, 538-544 (2005).
    20. A. J. Nozik, Quantum dot solar cells. Physica E 14, 115–120 (2002).
    21. I. Mora-Seró, J. Bisquert, Breakthroughs in the Development of Semiconductor-Sensitized solar cells. J. Phys. Chem. Lett. 1, 3046-3052 (2010).
    22. K. Yu, X. Lin, G. Lu, Z, Wen, C. Yuan, J. Chen, Optimized CdS quantum dot-sensitized solar cell performance through atomic layer deposition of ultrathin TiO2 coating. RSC Advances 2, 7843-7848 (2012).
    23. M. Shalom, S. Dor, S. R. hle, L. Grinis, A. Zaban, Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 coating. J. Phys. Chem. C 113, 3895-3898 (2009).
    24. H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. II Seok, M. Grätzel, CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity. J. Phys. Chem. C 112, 11600–11608 (2008).
    25. S. Gimenez et al., Improving the performance of colloidal quantum-dot-sensitized solar cells. Nanotechnology 20, 295204 (2009).
    26. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, G. Hodes, Chemical Bath Deposited CdS/CdSe-sensitized Porous TiO2 Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry 181, 306-313 (2006).
    27. L. J. Diguna, Q. Shen, J. Kobayashi, T. Toyoda, High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Applied Physics Letters 91, 023116 (2007).
    28. Y.-L. Lee, C.-H. Chang, Efficient Polysulfide Electrolyte for CdS Quantum Dot-Sensitized Solar Cells. Journal of Power Sources 185, 584-588 (2008).
    29. H. Z. Zhenxiao Pan, Kan Cheng, Yumei Hou, Jianli Hua, and Xinhua Zhong, Highly Efficient Inverted Type-I CdSCdSe CoreShell Structure QD-Sensitized Solar Cells ACS Nano 6, 3982–3991 (2012).
    30. J. Tian et al., Enhanced Performance of CdS/CdSe Quantum Dot Cosensitized Solar Cells via Homogeneous Distribution of Quantum Dots in TiO2 Film. The Journal of Physical Chemistry C 116, 18655-18662 (2012).
    31. K. Z. Zhenxiao Pan, JinWang, Hua Zhang, Yaoyu Feng, and Xinhua Zhong, Near Infrared Absorption of CdSexTe1-x Alloyed Quantum Dot Sensitized Solar Cells with More than 6% Efficiency and High Stability. ACS Nano 7, 5215–5222 (2013).
    32. H. Zhu, N. Song, T. Lian, Charging of Quantum Dots by Sulfide Redox Electrolytes Reduces Electron Injection Efficiency in Quantum Dot Sensitized Solar Cells. Journal of the American Chemical Society 135, 11461-11464 (2013).
    33. S. Itzhakov, H. Shen, S. Buhbut, H. Lin, D. Oron, Type-II Quantum-Dot-Sensitized Solar Cell Spanning the Visible and Near-Infrared Spectrum. The Journal of Physical Chemistry C 117, 22203-22210 (2013).
    34. J. Wang, I. Mora-Sero, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, J. Bisquert, Core/shell Colloidal Quantum Dot Exciplex States for the Development of Highly Efficient Quantum-Dot-Sensitized Solar Cells. Journal of the American Chemical Society 135, 15913-15922 (2013).
    35. Y. Choi, M. Seol, W. Kim, K. Yong, Chemical Bath Deposition of Stoichiometric CdSe Quantum Dots for Efficient Quantum-Dot-Sensitized Solar Cell Application. The Journal of Physical Chemistry C 118, 5664-5670 (2014).
    36. L.-W. Chong, H.-T. Chien, Y.-L. Lee, Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications. Journal of Power Sources 195, 5109-5113 (2010).
    37. H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Gratzel, M. K. Nazeeruddin, Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir : the ACS journal of surfaces and colloids 25, 7602-7608 (2009).
    38. P. Yu, Z. Kai, A. G. Norman, S. Ferrere, A. J. Frank, A. J. Nozik, Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots J. Phys. Chem. B 110, 25451-25454 (2006).
    39. H. J. Lee et al., Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process NANO LETTERS 9, 4221-4227 (2009).
    40. S. H. Im, H.-j. Kim, J. H. Rhee, C.-S. Lim, S. I. Seok, Performance improvement of Sb2S3-sensitized solar cell by introducing hole buffer layer in cobalt complex electrolyte. Energy & Environmental Science 4, 2799 (2011).
    41. Semiconductor liquid junction solar cells based on anodic sulphide films. Nature 262, (1976).
    42. G. Milczarek, A. Kasuya, S. Mamykin, T. Arai, K. Shinoda, K. Tohji, Optimization of a two-compartment photoelectrochemical cell for solar hydrogen production. International Journal of Hydrogen Energy 28, 919-926 (2003).
    43. Y. Bessekhouad, M. Mohammedi, M. Trari, Hydrogen photoproduction from hydrogen sulfide on Bi2S3 catalyst. Solar Energy Materials and Solar Cells 73, 339-350 (2002).
    44. Y.-L. Lee, Y.-S. Lo, Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Advanced Functional Materials 19, 604-609 (2009).
    45. S.-Q. Fan, B. Fang, J. H. Kim, J. J. Kim, J. S. Yu, J. Ko, Hierarchical nanostructured spherical carbon with hollow core/mesoporous shell as a highly efficient counter electrode in CdSe quantum-dot-sensitized solar cells. Applied Physics Letters 96, 063501 (2010).
    46. Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, D. Li, Application of carbon counterelectrode on CdS quantum dot-sensitized solar cells (QDSSCs). Electrochemistry Communications 12, 327-330 (2010).
    47. S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J. S. Yu, J. Ko, Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in Dye-Sensitized and Quantum-Dot Solar Cells. Langmuir : the ACS journal of surfaces and colloids 26, 13644-13649 (2010).
    48. G. Hodes, J. Manassen, D. Cahen, Electrocatalytic Electrodes for the Polysulfide Redox System. J. Electrochem. Soc.: ELECTROCHEMICAL SCIENCE AND TECHNOLOGY 127, 544-549 (1980).
    49. Z. Yang, C.-Y. Chen, C.-W. Liu, H.-T. Chang, Electrocatalytic sulfur electrodes for CdS/CdSe quantum dot-sensitized solar cells. Chemical communications 46, 5485-5487 (2010).
    50. Z. Yang, C.-Y. Chen, C.-W. Liu, C.-L. Li, H.-T. Chang, Quantum Dot-Sensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1% Efficiency. Advanced Energy Materials 1, 259-264 (2011).
    51. Q. Shen, A. Yamada, S. Tamura, T. Toyoda, CdSe quantum dot-sensitized solar cell employing TiO2 nanotube working-electrode and Cu2S counter-electrode. Applied Physics Letters 97, 123107 (2010).
    52. Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh, A. Zaban, PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells. The Journal of Physical Chemistry C 115, 6162-6166 (2011).
    53. Wikipedia contributors. (Wikipedia, The Free Encyclopedia).
    54. I. Mora-Sero et al., Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: the role of the linker molecule and of the counter electrode. Nanotechnology 19, 424007 (2008).
    55. J. T. Margraf, A. Ruland, V. Sgobba, D. M. Guldi, T. Clark, Quantum-dot-sensitized solar cells: understanding linker molecules through theory and experiment. Langmuir : the ACS journal of surfaces and colloids 29, 2434-2438 (2013).
    56. X.-Y. Yu, B.-X. Lei, D.-B. Kuang, C.-Y. Su, Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chemical Science 2, 1396 (2011).
    57. X.-Y. Yu, B.-X. Lei, D.-B. Kuang, C.-Y. Su, High performance and reduced charge recombination of CdSe/CdS quantum dot-sensitized solar cells. Journal of Materials Chemistry 22, 12058 (2012).
    58. T.-L. Li, Y.-L. Lee, H. Teng, High-performance quantum dot-sensitized solar cells based on sensitization with CuInS2 quantum dots/CdS heterostructure. Energy & Environmental Science 5, 5315 (2012).
    59. Y.-L. Lee, B.-M. Huang, H.-T. Chien, Highly Efficient CdSe-Sensitized TiO2 Photoelectrode for Quantum-Dot-Sensitized Solar Cell Applications. Chemistry of Materials 20, 6903-6905 (2008).
    60. S. V. Mahajan, J. Cho, M. S. P. Shaffer, A. R. Boccaccini, J. H. Dickerson, Electrophoretic deposition and characterization of Eu2O3 nanocrystal-Carbon nanotube heterostructures. Journal of the European Ceramic Society 30, 1145-1150 (2010).
    61. M. Giersig , P. Mulvaney, Formation of Ordered Two-Dimensional Gold Colloid Lattices by Electrophoretic Deposition. J. Phys. Chem. 97, 6334-6336 (1993).
    62. T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition. J. Phys. Chem. B 103, 3818-3827 (1999).
    63. Mingyuan Gao, M. Gao, J. Sun, E. Dulkeith, N. Gaponik, U. Lemmer, J.Feldmann, Lateral Patterning of CdTe Nanocrystal Films by the Electric Field Directed Layer-by-Layer Assembly Method. Langmuir : the ACS journal of surfaces and colloids 18, 4098-4102 (2002).
    64. Larissa Grinis, Snir Dor, Ashi Ofir, Arie Zaban, Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 198, 52-59 (2008).
    65. N. J. Smith, K. J. Emmett, S. J. Rosenthal, Photovoltaic cells fabricated by electrophoretic deposition of CdSe nanocrystals. Applied Physics Letters 93, 043504 (2008).
    66. A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, U. Banin, Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition. ACS Nano 4, 5962-5968 (2010).
    67. N. Guijarro, T. Lana-Villarreal, Q. Shen, T. Toyoda, R. Gómez, Sensitization of Titanium Dioxide Photoanodes with Cadmium Selenide Quantum Dots Prepared by SILAR: Photoelectrochemical and Carrier Dynamics Studies. J. Phys. Chem. C 114, (2010).
    68. R. Zhang, Q. P. Luo, H. Y. Chen, X. Y. Yu, D. B. Kuang, C. Y. Su, CdS/CdSe quantum dot shell decorated vertical ZnO nanowire arrays by spin-coating-based SILAR for photoelectrochemical cells and quantum-dot-sensitized solar cells. Chemphyschem : a European journal of chemical physics and physical chemistry 13, 1435-1439 (2012).
    69. S. H. Im, H.-J. Kim, S. Kim, S.-W. Kim, S. I. Seok, Improved air stability of PbS-sensitized solar cell by incorporating ethanedithiol during spin-assisted successive ionic layer adsorption and reaction. Organic Electronics 13, 2352-2357 (2012).
    70. N. Guijarro, T. Lana-Villarreal, T. Lutz, S. A. Haque, R. Gómez, Sensitization of TiO2 with PbSe Quantum Dots by SILAR: How Mercaptophenol Improves Charge Separation. The Journal of Physical Chemistry Letters 3, 3367-3372 (2012).
    71. A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, G. J. Wang, Ag2S quantum dot-sensitized solar cells. Electrochemistry Communications 12, 1158-1160 (2010).
    72. A. Tubtimtae, M.-W. Lee, G.-J. Wang, Ag2Se quantum-dot sensitized solar cells for full solar spectrum light harvesting. Journal of Power Sources 196, 6603-6608 (2011).
    73. Zhengji Zhou et al., CuInS2 quantum dot-sensitized TiO2 nanorod array photoelectrodes: synthesis and performance optimization. Nanoscale Research Letters 7, (2012).
    74. Q. C. Wan, C. Y. Luan, X. Q. Xu, F. J. Mei, P. An, G. Xu, Influence of Heat Treatment on the Properties of CuInS2 Sensitized Solar Cells. Key Engineering Materials 519, 65-69 (2012).
    75. R. Vogel, P. Hoyer, H. Weller, Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors J. Phys. Chem. 98, 3183-3188 (1994).
    76. A. Zaban, O. I. Mićić, B. A. Gregg, A. J. Nozik, Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots. Langmuir : the ACS journal of surfaces and colloids 14, 3153-3156 (1998).
    77. S.-m. Yang, C.-h. Huang, J. Zhai, Z.-s. Wang, L. Jiang, High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides. Journal of Materials Chemistry 12, 1459-1464 (2002).
    78. R. Plass, S. Pelet, J. Krueger, M. Gratzel, Quantum Dot Sensitization of Organic−Inorganic Hybrid Solar Cells J. Phys. Chem. B 106, 7578-7580 (2002).
    79. S.-C. Lin, Y.-L. Lee, C.-H. Chang, Y.-J. Shen, Y.-M. Yang, Quantum-dot-sensitized solar cells: Assembly of CdS-quantum-dots coupling techniques of self-assembled monolayer and chemical bath deposition. Applied Physics Letters 90, 143517 (2007).
    80. C.-H. Chang, Y.-L. Lee, Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells. Applied Physics Letters 91, 053503 (2007).
    81. V. González-Pedro, X. Xu, I. Mora-Seró, J. Bisquert, Modeling High-Efficiency Quantum Dot Sensitized Solar Cells ACS Nano 4, 5783–5790 (2010).
    82. Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, Q. Meng, Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes. Physical chemistry chemical physics : PCCP 13, 4659-4667 (2011).
    83. K.-H. Lin, C.-Y. Chuang, Y.-Y. Lee, F.-C. Li, Y.-M. Chang, I. P. Liu, S.-C. Chou, Y.-L. Lee, Charge Transfer in the Heterointerfaces of CdS/CdSe Cosensitized TiO2 Photoelectrode. The Journal of Physical Chemistry C 116, 1550-1555 (2012).
    84. M. A. Hossain, J. R. Jennings, C. Shen, J. H. Pan, Z. Y. Koh, N. Mathews, Q. Wang, CdSe-sensitized mesoscopic TiO2 solar cells exhibiting >5% efficiency: redundancy of CdS buffer layer. Journal of Materials Chemistry 22, 16235 (2012).
    85. P. K. Santra, P. V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. Journal of the American Chemical Society 134, 2508-2511 (2012).
    86. Z. Zhu, J. Qiu, K. Yan, S. Yang, Building high-efficiency CdS/CdSe-sensitized solar cells with a hierarchically branched double-layer architecture. ACS applied materials & interfaces 5, 4000-4005 (2013).
    87. I. P. Liu, C. W. Chang, H. Teng, Y. L. Lee, Performance enhancement of quantum-dot-sensitized solar cells by potential-induced ionic layer adsorption and reaction. ACS applied materials & interfaces 6, 19378-19384 (2014).
    88. X. Zhang, Y. Lin, Y. Lin, J. Wu, Synthesis of hierarchical nanowires-based TiO2 spheres for their application as the light blocking layers in CdS/CdSe co-sensitized solar cells. Journal of Materials Science: Materials in Electronics 26, 693-699 (2014).
    89. D. Wu, D. Wu, F. Zhu, J. Li, H. Dong, Q. Li, K. Jiang, D. Xu, Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells. Journal of Materials Chemistry 22, 11665 (2012).
    90. R. Zhou, Q. Zhang, J. Tian, D. Myers, M. Yin, G. Cao, Influence of Cationic Precursors on CdS Quantum-Dot-Sensitized Solar Cell Prepared by Successive Ionic Layer Adsorption and Reaction. The Journal of Physical Chemistry C 117, 26948-26956 (2013).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE