簡易檢索 / 詳目顯示

研究生: 黃玲育
Huang, Ling-Yu
論文名稱: 單細胞基因檢測分析口腔癌動物模型癌化過程
Single Cell Analysis in Different Carcinogenesis Stages of Oral Cancer Model
指導教授: 黃則達
Huang, Tze-Ta
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 149
中文關鍵詞: 口腔鱗狀細胞癌4-硝基喹啉-1-氧化物檳榔鹼單細胞RNA定序
外文關鍵詞: Oral squamous cell carcinoma, 4-Nitroquinoline 1-oxide, Arecoline, Single-cell RNA sequencing
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是台灣10大死因之首,每年有4萬多人因罹患癌症而死亡,不僅影響病患和家人的生活品質,造成龐大醫療費用支出,中壯年人口罹癌也影響整體經濟層面。在十大癌症死因中,口腔癌排名第五名,口腔癌每年的發生率持續上升,且主要好發於中壯年人口。造成口腔癌主要原因包括抽菸、飲酒、嚼檳榔和人類乳突瘤病毒感染所引起的慢性刺激和發炎,造成正常口腔黏膜組織轉變癌前病變並逐步演變為口腔癌。目前治療上仍以手術治療為主,其他治療包含放射線治療、化學治療、及免疫療法。然而,臨床上診斷的案例如為口腔癌晚期的病人,則治療效果有限;在早期治療癌症病患,即使手術切除加上放射療法或化學療法,病人依然有可能發生抗藥性及癌症惡化、轉移現象。腫瘤存在著高度異質性,導致每群腫瘤細胞對於治療方法產生不同反應與影響預後結果。本研究藉由以模擬香菸中之致癌物4-硝基喹啉-1-氧化物(4-Nitroquinoline 1-oxide,4-NQO)及檳榔中的致癌物檳榔鹼(Areocoline),刺激小鼠口腔鱗狀細胞癌化轉變模型,利用單細胞基因檢測分析平台,分析不同細胞群間基因表現及影響腫瘤癌化的因子,研究分別取出16週及29週對照組及實驗組小鼠舌頭正常及腫瘤細胞做單細胞分選,在所有細胞中因細胞表現特性被分成17群,從中挑選了2群細胞族群,推測這兩群細胞也許是參與細胞癌化過程的重要因子,使用基因功能富集分析,在兩群細胞族群表現最顯著所參與的調控路徑皆為MYC_targets_v1。也從這兩個細胞族群中選取了RANBP1,MCM5,EIF3B,PSMA6,NPM1與HSP90AB1基因,做後續在具有Cisplatin抗藥性的鼻咽癌細胞株中分析RNA與蛋白質表現量。本研究希望透過以單細胞分析找出適當的生物標記,應用在口腔癌前病變患者,期望找出高危險群人口,以便能及早介入。

    The cancer has been the top causes of death in Taiwan. The quality of life of patients and their family were affected, the medical expenses of the society are huge, and the economic is deeply impacted while cancer incidence in middle age. Oral cancer is ranked as the fifth incidence, and the rate increased every year. Oral cancer especially onset at middle age. The causes of oral cancer include smoking, drinking, betel quid chewing, chronic stimulation and inflammation from Human Papillomavirus. Oral carcinogenesis is a sequential of normal oral mucosa, oral potentially malignant disorders, to oral canecr. Currently, surgical resection is the main treatment, and others are Radiotherapy, Chemotherapy, and Immunotherapy. However, patients who are diagnosed with the oral cancer of late stage were less effective in therapies. In the early treatment of cancer, patients also suffered from resistance of Chemotherapy, or Radiotherapy, and recurrences after surgical resection. The tumor heterogeneity is different clusters of tumor cells express different genes and different tumor behaviors. By the animal model of oral cancer with treated 4-Nitroquinoline 1-oxide and Arecoline to induce the oral cancer in mice, the main factors in carcinogenesis were distinguished in gene expression in single-cell RNA sequencing analysis. Tumor cell carcinogenesis between different tumor cell groups were analyzed. All cells in 11 samples are clustered 17 groups by Louvain algorithm in 29 weeks and 16 weeks treated groups. In the cluster 7 and 9 were analyzed by Gene Set Enrichment Analysis. The results show their genes are associated with MYC_targets_v1 pathway and are validated by cisplatin-resistant nasopharyngeal carcinoma cell lines. These biomarkers in oral cancer carcinogenesis can be applied to detect patients with oral precancerous lesions and identified the high-risk populations.

    摘要 Ⅰ Abstract ⅡI 致謝 X 目錄 XII 圖目錄 XVI 表目錄 ⅩVIII 第一章 緒論 1 一、 口腔癌(Oral cancer) 1 二、 單細胞RNA測序(Single-cell RNA sequencing) 4 三、 表觀基因體調控(Epigenetic regulation) 5 四、 表觀基因體調控與癌症(Epigenetic regulation and cancer) 7 五、 酪氨酸蛋白激酶6 (Protein Tyrosine Kinase 6) 9 六、 谷氨酸脫羧酶2(Glutamate Decarboxylase 2) 9 七、 焦磷酸定序驗證(Pyrosequencing) 10 八、 研究動機 11 第二章 實驗材料與方法 12 一、 實驗動物模型建立(Establishment of experimental animal model) 12 (1) 4-NQO and Arecoline藥物配製(4-NQO and Arecoline preparation) 12 (2) 4-NQO and Arecoline藥物處理(4-NQO and Arecoline treatment) 13 二、 舌頭細胞分離(Tongue cell preparation) 13 (1) 酵素製備(Enzyme preparation) 13 (2) 組織分解(Tissue dissociation) 14 三、10x Genomics platform 16 (1) 微流體單細胞分選及油滴微珠包覆 (Single cell sorting used droplet-based microfluidics and GEM generation) 17 (2) Post GEM-RT Cleanup and cDNA Amplification 19 (3) 3’ Gene Expression Library Construction 22 四、次世代定序(Next Generation sequencing,NGS) 28 (1) 次世代定序平台(Illumina) 28 (2) 次世代定序數據生物資訊分析(Bioinformatic analysis of next- generation sequencing data) 29 五、DNA 甲基化分析(DNA methylation analysis) 29 (1) DNA萃取(DNA extraction) 29 (2) 亞硫酸鹽處理(Bisulfite treatment) 31 (3) 引子設計(Primer design) 32 (4) PCR 反應增幅(PCR amplification of target region) 33 (5) 洋菜膠體電泳分析(Agarose gel electrophoresis) 35 (6) 焦磷酸定序(Pyrosequencing) 36 六、RNA表現量分析(RNA expression assay) 38 (1) RNA萃取(RNA extraction) 38 (2) 逆轉錄聚合酶鏈式反應(reverse transcription-PCR,RT-PCR) 39 (3) 即時定量聚合酶連鎖反應(Real-time Quantitative Polymerase Chain Reaction,Q-PCR) 40 七、蛋白質表現量分析(Protein expression assay) 43 (1) 蛋白質萃取(Protein extraction) 43 (2) 蛋白質濃度測定與蛋白質樣品製備(Protein assay) 43 (3) 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳(SDS-PAGE electrophoresis) 45 (4) 西方墨點法(Western blot) 47 八、細胞培養 (Cell culture) 50 (1) 細胞株 (Cell line) 50 (2) 細胞解凍 (Cell thawing) 51 (3) 細胞繼代培養 (Subculture) 52 (4) 細胞凍存 (Cell freezing) 53 第三章 實驗結果 55 一、 實驗動物模型癌化過程 55 二、 單細胞基因檢測分析對照組與實驗組小鼠 55 三、 動物模型癌化過程所參與調控路徑 58 四、分析對照組與實驗組DNA中GAD2和PTK6基因甲基化情形 60 五、分析對照組與實驗組GAD2和PTK6 mRNA表現量情形 61 六、分析對照組與實驗組GAD2和PTK6蛋白質表現量情形 62 第四章 討論 63 第五章 結論 75 參考文獻 77 圖表 83 補充資料 127

    1. Lousada-Fernandez, F., et al., Liquid Biopsy in Oral Cancer. Int J Mol Sci, 2018. 19(6).
    2. Shih, L.C., et al., Association of Caspase-8 Genotypes With Oral Cancer Risk in Taiwan. In Vivo, 2019. 33(4): p. 1151-1156.
    3. Montero, P.H. and S.G. Patel, Cancer of the oral cavity. Surg Oncol Clin N Am, 2015. 24(3): p. 491-508.
    4. Kumar, M., et al., Oral cancer: Etiology and risk factors: A review. J Cancer Res Ther, 2016. 12(2): p. 458-63.
    5. Lydiatt, W.M., et al., Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin, 2017. 67(2): p. 122-137.
    6. Wong, T. and D. Wiesenfeld, Oral Cancer. Aust Dent J, 2018. 63 Suppl 1: p. S91-S99.
    7. Suva, M.L. and I. Tirosh, Single-Cell RNA Sequencing in Cancer: Lessons Learned and Emerging Challenges. Mol Cell, 2019. 75(1): p. 7-12.
    8. Valihrach, L., P. Androvic, and M. Kubista, Platforms for Single-Cell Collection and Analysis. Int J Mol Sci, 2018. 19(3).
    9. Reid, M.A., Z. Dai, and J.W. Locasale, The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol, 2017. 19(11): p. 1298-1306.
    10. Unnikrishnan, A., et al., The role of DNA methylation in epigenetics of aging. Pharmacol Ther, 2019. 195: p. 172-185.
    11. Golson, M.L. and K.H. Kaestner, Epigenetics in formation, function, and failure of the endocrine pancreas. Mol Metab, 2017. 6(9): p. 1066-1076.
    12. Nebbioso, A., et al., Cancer epigenetics: Moving forward. PLoS Genet, 2018. 14(6): p. e1007362.
    13. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
    14. Agirre, X., et al., Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Res, 2015. 25(4): p. 478-87.
    15. Walker, B.A., et al., Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma. Blood, 2011. 117(2): p. 553-62.
    16. Martinez-Garcia, E., et al., The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood, 2011. 117(1): p. 211-20.
    17. Choudhury, J.H. and S.K. Ghosh, Promoter Hypermethylation Profiling Identifies Subtypes of Head and Neck Cancer with Distinct Viral, Environmental, Genetic and Survival Characteristics. PLoS One, 2015. 10(6): p. e0129808.
    18. Ogi, K., et al., Aberrant methylation of multiple genes and clinicopathological features in oral squamous cell carcinoma. Clin Cancer Res, 2002. 8(10): p. 3164-71.
    19. Qiu, L., et al., Small molecule inhibitors reveal PTK6 kinase is not an oncogenic driver in breast cancers. PLoS One, 2018. 13(6): p. e0198374.
    20. Irie, H.Y., et al., PTK6 regulates IGF-1-induced anchorage-independent survival. PLoS One, 2010. 5(7): p. e11729.
    21. Day, K.C., et al., HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Res, 2017. 77(1): p. 74-85.
    22. Knudsen, B.S. and M. Edlund, Prostate cancer and the met hepatocyte growth factor receptor. Adv Cancer Res, 2004. 91: p. 31-67.
    23. Alwanian, W.M. and A.L. Tyner, Protein tyrosine kinase 6 signaling in prostate cancer. Am J Clin Exp Urol, 2020. 8(1): p. 1-8.
    24. Pan, Z.Z., Transcriptional control of Gad2. Transcription, 2012. 3(2): p. 68-72.
    25. Zhang, Z., et al., Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med, 2011. 17(11): p. 1448-55.
    26. MacDonald, J.L. and A.J. Roskams, Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol, 2009. 88(3): p. 170-83.
    27. Tost, J. and I.G. Gut, DNA methylation analysis by pyrosequencing. Nat Protoc, 2007. 2(9): p. 2265-75.
    28. Darst, R.P., et al., Bisulfite sequencing of DNA. Curr Protoc Mol Biol, 2010. Chapter 7: p. Unit 7 9 1-17.
    29. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108.
    30. Lee, B.J., et al., Relationship of Oxidative Stress, Inflammation, and the Risk of Metabolic Syndrome in Patients with Oral Cancer. Oxid Med Cell Longev, 2018. 2018: p. 9303094.
    31. Jiang, X., et al., Tobacco and oral squamous cell carcinoma: A review of carcinogenic pathways. Tob Induc Dis, 2019. 17: p. 29.
    32. Tsai, W.C., et al., Beneficial impact of multidisciplinary team management on the survival in different stages of oral cavity cancer patients: results of a nationwide cohort study in Taiwan. Oral Oncol, 2015. 51(2): p. 105-11.
    33. Adel, M., et al., Incidence and Outcomes of Patients With Oral Cavity Squamous Cell Carcinoma and Fourth Primary Tumors: A Long-term Follow-up Study in a Betel Quid Chewing Endemic Area. Medicine (Baltimore), 2016. 95(12): p. e2950.
    34. Ketabat, F., et al., Controlled Drug Delivery Systems for Oral Cancer Treatment-Current Status and Future Perspectives. Pharmaceutics, 2019. 11(7).
    35. Kreso, A. and J.E. Dick, Evolution of the cancer stem cell model. Cell Stem Cell, 2014. 14(3): p. 275-91.
    36. Venteicher, A.S., et al., Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science, 2017. 355(6332).
    37. Picelli, S., Single-cell RNA-sequencing: The future of genome biology is now. RNA Biol, 2017. 14(5): p. 637-650.
    38. Kim, C., et al., Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing. Cell, 2018. 173(4): p. 879-893 e13.
    39. Izar, B., et al., A single-cell landscape of high-grade serous ovarian cancer. Nat Med, 2020.
    40. Zheng, C., et al., Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell, 2017. 169(7): p. 1342-1356 e16.
    41. Kao, Y.Y., et al., The increase of oncogenic miRNA expression in tongue carcinogenesis of a mouse model. Oral Oncol, 2015. 51(12): p. 1103-12.
    42. Tseng, S.H., et al., K14-EGFP-miR-31 transgenic mice have high susceptibility to chemical-induced squamous cell tumorigenesis that is associating with Ku80 repression. Int J Cancer, 2015. 136(6): p. 1263-75.
    43. Chandak RM, C.M., Rawlani SM., Current Concepts about Areca Nut Chewing. Journal of Contemporary Dentistry, 2013. 3(2): p. 78-81.
    44. Chang, N.W., et al., Co-treating with arecoline and 4-nitroquinoline 1-oxide to establish a mouse model mimicking oral tumorigenesis. Chem Biol Interact, 2010. 183(1): p. 231-7.
    45. Liberzon, A., et al., Molecular signatures database (MSigDB) 3.0. Bioinformatics, 2011. 27(12): p. 1739-40.
    46. Liberzon, A., et al., The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst, 2015. 1(6): p. 417-425.
    47. Rounbehler, R.J., et al., Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell, 2012. 150(3): p. 563-74.
    48. Chen, B.J., et al., Small molecules targeting c-Myc oncogene: promising anti-cancer therapeutics. Int J Biol Sci, 2014. 10(10): p. 1084-96.
    49. Keller, U., et al., Myc suppression of Nfkb2 accelerates lymphomagenesis. BMC Cancer, 2010. 10: p. 348.
    50. Seitz, V., et al., Deep sequencing of MYC DNA-binding sites in Burkitt lymphoma. PLoS One, 2011. 6(11): p. e26837.
    51. Fallah, Y., et al., MYC-Driven Pathways in Breast Cancer Subtypes. Biomolecules, 2017. 7(3).
    52. Li, S., et al., GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Cancer Res, 2018. 37(1): p. 80.
    53. Skrzypczak, M., et al., Modeling oncogenic signaling in colon tumors by multidirectional analyses of microarray data directed for maximization of analytical reliability. PLoS One, 2010. 5(10).
    54. Mollaoglu, G., et al., MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition. Cancer Cell, 2017. 31(2): p. 270-285.
    55. Choi, W., et al., YAP/TAZ Initiates Gastric Tumorigenesis via Upregulation of MYC. Cancer Res, 2018. 78(12): p. 3306-3320.
    56. Lin, S.H., et al., c-MYC expression in T (III/IV) stage oral squamous cell carcinoma (OSCC) patients. Cancer Manag Res, 2019. 11: p. 5163-5169.
    57. Liu, L., et al., Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal. Mol Biol Cell, 2015. 26(10): p. 1797-810.
    58. Koh, C.M., A. Sabo, and E. Guccione, Targeting MYC in cancer therapy: RNA processing offers new opportunities. Bioessays, 2016. 38(3): p. 266-75.
    59. Kress, T.R., A. Sabo, and B. Amati, MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer, 2015. 15(10): p. 593-607.
    60. Yue, Q., et al., Expression of eukaryotic translation initiation factor 3 subunit B in liver cancer and its prognostic significance. Exp Ther Med, 2020. 20(1): p. 436-446.
    61. Kleiger, G. and T. Mayor, Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol, 2014. 24(6): p. 352-9.
    62. Adams, J., Potential for proteasome inhibition in the treatment of cancer. Drug Discovery Today, 2003. 8(7): p. 307-315.
    63. Adele Di Matteo, M.F., Sara Chiarella, Serena Rocchio, Carlo Travaglini-Allocatelli and Luca Federici, Molecules that target nucleophosmin for cancer treatment: an update. Oncotarget, 2016. 7(28): p. 44821-44840.
    64. Li, Z.L., D. Boone, and S.R. Hann, Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(48): p. 18794-18799.
    65. Teng, S.C., et al., Direct activation of HSP90A transcription by c-Myc contributes to c-Myc-induced transformation. J Biol Chem, 2004. 279(15): p. 14649-55.
    66. Kang, S.A., et al., Hsp90 rescues PTK6 from proteasomal degradation in breast cancer cells. Biochem J, 2012. 447(2): p. 313-20.
    67. Wang, H., et al., Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/beta-catenin signaling pathways in gastric cancer progression. Oncogene, 2019. 38(9): p. 1489-1507.
    68. Liu, K., et al., Prognostic value of the mRNA expression of members of the HSP90 family in non-small cell lung cancer. Exp Ther Med, 2019. 17(4): p. 2657-2665.
    69. Irimie, A.I., et al., Knocking down of p53 triggers apoptosis and autophagy, concomitantly with inhibition of migration on SSC-4 oral squamous carcinoma cells. Mol Cell Biochem, 2016. 419(1-2): p. 75-82.
    70. Lingen, M.W., et al., Genetics/epigenetics of oral premalignancy: current status and future research. Oral Dis, 2011. 17 Suppl 1: p. 7-22.
    71. Sharma, S., T.K. Kelly, and P.A. Jones, Epigenetics in cancer. Carcinogenesis, 2010. 31(1): p. 27-36.
    72. Jones, P.A. and S.B. Baylin, The epigenomics of cancer. Cell, 2007. 128(4): p. 683-92.
    73. Gasche, J.A. and A. Goel, Epigenetic mechanisms in oral carcinogenesis. Future Oncol, 2012. 8(11): p. 1407-25.
    74. Baba, S., et al., Global DNA hypomethylation suppresses squamous carcinogenesis in the tongue and esophagus. Cancer Sci, 2009. 100(7): p. 1186-91.
    75. Supic, G., et al., Prognostic significance of tumor-related genes hypermethylation detected in cancer-free surgical margins of oral squamous cell carcinomas. Oral Oncol, 2011. 47(8): p. 702-8.
    76. Khan, Z., et al., Detection of survivin and p53 in human oral cancer: correlation with clinicopathologic findings. Head Neck, 2009. 31(8): p. 1039-48.
    77. Yin, Y. and W.H. Shen, PTEN: a new guardian of the genome. Oncogene, 2008. 27(41): p. 5443-53.
    78. Yang, H.J., et al., Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer, 2006. 6: p. 212.
    79. Helga B. SALVESEN, N.M., Andy RYAN, Ian J. JACOBS, Eric D. LYNCH, Lars A. AKSLEN and Soma DAS, PTEN METHYLATION IS ASSOCIATED WITH ADVANCED STAGE AND MICROSATELLITE INSTABILITY IN ENDOMETRIAL CARCINOMA. International Journal of Cancer Prevention, 2001. 91: p. 22-26.
    80. Jean-Charles Soria, H.-Y.L., Janet I. Lee, Luo Wang, Jean-Pierre Issa,Bonnie L. Kemp, Diane D. Liu,Jonathan M. Kurie, Li Mao, and Fadlo R. Khuri, Lack of PTEN Expression in Non-Small Cell Lung Cancer Could Be Related to Promoter Methylation. Clinical Cancer Research, 2002. 8: p. 1178-1184.
    81. YOSHINORI KURASAWA, M.S., MEGUMI NAKAMURA,KAZUAKI FUSHIMI, TAKASHI ISHIGAMI, HIROKI BUKAWA,HIDETAKA YOKOE , KATSUHIRO UZAWA and HIDEKI TANZAWA, PTEN expression and methylation status in oral squamous cell carcinoma. ONCOLOGY REPORTS, 2008. 19: p. 1429-1434.
    82. J I Lee , J.C.S., K A Hassan, A K El-Naggar, X Tang, D D Liu, W K Hong, L Mao, Loss of PTEN Expression as a Prognostic Marker for Tongue Cancer. ARCHIVES OF OTOLARYNGOLOGY–HEAD & NECK SURGERY, 2001. 127(12): p. 1441-1445.
    83. A Mavros, M.H., I Wieland, S Koy, O N Koufaki, K Strelocke, R Koch, G Haroske, H K Schackert, U Eckelt, Infrequent genetic alterations of the tumor suppressor gene PTEN/MMAC1 in squamous cell carcinoma of the oral cavity. Journal of Oral Pathology & Medicine, 2002. 31: p. 270-276.
    84. Panosyan, E.H., et al., In search of druggable targets for GBM amino acid metabolism. BMC Cancer, 2017. 17(1): p. 162.
    85. Zhubi, A., et al., Epigenetic regulation of RELN and GAD1 in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects. Int J Dev Neurosci, 2017. 62: p. 63-72.
    86. Buck-Koehntop, B.A. and P.A. Defossez, On how mammalian transcription factors recognize methylated DNA. Epigenetics, 2013. 8(2): p. 131-7.
    87. Moore, L.D., T. Le, and G. Fan, DNA methylation and its basic function. Neuropsychopharmacology, 2013. 38(1): p. 23-38.
    88. Jin, J., et al., The effects of cytosine methylation on general transcription factors. Sci Rep, 2016. 6: p. 29119.
    89. Ai, M., et al., Brk/PTK6 cooperates with HER2 and Src in regulating breast cancer cell survival and epithelial-to-mesenchymal transition. Cancer Biol Ther, 2013. 14(3): p. 237-45.
    90. Wang, X.J., et al., The expression and prognostic value of protein tyrosine kinase 6 in early-stage cervical squamous cell cancer. Chin J Cancer, 2016. 35(1): p. 54.
    91. Wozniak, D.J., et al., Vemurafenib Inhibits Active PTK6 in PTEN-null Prostate Tumor Cells. Mol Cancer Ther, 2019. 18(5): p. 937-946.
    92. Bucher-Johannessen, C., et al., Cisplatin treatment of testicular cancer patients introduces long-term changes in the epigenome. Clin Epigenetics, 2019. 11(1): p. 179.

    下載圖示 校內:2025-08-27公開
    校外:2025-08-27公開
    QR CODE