簡易檢索 / 詳目顯示

研究生: 林曉琳
Lin, Siao-lin
論文名稱: CD14在肝細胞株之分子調控機轉
The molecular regulation mechanism of CD14 in Huh-7 cells
指導教授: 林尊湄
Lin, Tsun-Mei
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 50
中文關鍵詞: 啟動子轉錄
外文關鍵詞: promoter, CD14
相關次數: 點閱:59下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CD14是一種表現在單核球細胞膜上的分化抗原,已知是LPS的接受器之一。由過去的研究顯示CD14啟動子-159T的多型性與其基因的表現有關,不論是在PBMC上mCD14以及血清中的sCD14其表現量均是TT型的族群大於CC型,而CD14-159T與新生兒膽道閉鎖疾病的發生率也有相關性。已有文獻證實CD14的表現量,在膽道結紮的動物模式以及膽道閉鎖病人的肝臟組織切片中都有上升的現象,過去被認為可能是單核細胞被活化所引起,但是CD14基因詳細調控機轉仍未被釐清。但也有報告證實人類的肝細胞也會合成CD14分子,屬於一種發炎急性期反應蛋白質,而我們自己的研究結果,也證明膽道閉鎖病患其肝細胞中CD14會明顯增加。因此本研究的目標著重在探討CD14在肝細胞中的表現及在膽汁鬱積的情形之調控機轉。我們首先構築CD14啟動子報導基因質體,以分析報導基因的方式來探討CD14在肝細胞的調控機轉。結果顯示CD14在肝細胞的表現,其主要調節的活性的重要區域在啟動子-300至-232之間,而在-376至-358之間的GATA-1結合位,則是一個抑制活性的區域。我們實驗室先前的研究發現臨床膽道閉鎖病人的血漿中sCD14濃度上升,而且其肝臟中的CD14 mRNA表現量明顯增加,由於膽汁鬱積會造成肝細胞內膽鹽堆積,而膽鹽的刺激會透過活化PKC的機制,促使肝細胞進行細胞凋亡而造成肝臟損傷。所以我們直接利用PMA(PKC agonist)來釐清PKC活化對CD14表現的影響。結果顯示在Huh-7細胞株,CD14啟動子的活性能被PMA誘導,且能被RO318220 (PKC inhibitor)所抑制。利用PMA刺激肝細胞三小時後,CD14 mRNA表現量也呈現明顯上升。綜合以上研究,我們證實CD14在肝細胞中具有高度的轉錄活性,而在膽汁鬱積的過程中,其活性上升的機制,可能和PKC的訊息傳導路徑有關。

    CD14 is a pattern recognition receptor that plays a central role in innate immunity through recognition of lipopolysaccarides. Recently, our group has showed CD14 -159T promoter polymorphism was related with the gene expression. Homozygous carriers of the T allele have a significant increase in mCD14 on monocytes and sCD14 in sera. In our previous study, The CD14 -159T promoter polymorphism was also associated with the development biliary atresia (BA) and idiopathic neonatal cholestasis. Although increased expression of CD14 in liver specimens of BA patients have been reported, the exact mechanism of over-expression of CD14 in cholestasis is yet to be elucidated. Human hepatocytes were demonstrated to produce CD14 as an acute phase protein, whereas little literature documented the regulation mechanisms of CD14 gene expression in liver. Therefore, the specific goal of this study is to investigate the regulation mechanism of CD14 gene expression in Huh-7 cells. Preliminary data of our laboratory, significantly higher hepatic CD14 mRNA expression and plasma sCD14 levels in BA patients were demonstrated. It implies that CD14 might be involved in pathogenesis and progression of BA. The basal activity of CD14 expression in hepatocytes was investigated by promoter report assays. Based on the data of serial deletion analysis, the hepatocyte-specific regulation region of CD14 promoter is localized in -300/-232 segment, and the GATA-1 binding element within -376/-358 was demonstrated to act as a repressor. It was reported that accumulated bile salts may cause liver damage and induce the apoptosis of hepatocytes via the activation of protein kinase C (PKC). Our results also showed the activity of CD14 promoter and the levels of CD14 mRNA can be activated by PMA (PKC agonist) and inhibited by RO318220 (PKC inhibitor). It implies that PKC signal pathway may involve in CD14 production in hepatocytes during cholestasis. In conclusion, this study demonstrated CD14 was highly expressed in hapatocytes and might be up-regulated in cholestasis via PKC activation.

    中文摘要 III 英文摘要 IV 致謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 縮寫檢索表 X 儀器及藥品 XII 第一章 緒論 第一節 膽汁鬱積概論 1 第二節 新生兒膽道閉鎖 2 第三節 CD14分子及其特性 3 第二章 研究動機 6 第三章 材料與方法 第一節 細胞培養 7 第二節 CD14啟動子質體構築 8 第三節 CD14啟動子質體暫時性的轉染分析 14 第四節 報導基因活性分析 15 第五節 CD14啟動子序列與核蛋白質結合情形之分析 16 第六節 CD14 mRNA分析 20 第四章 結果 第一節 分析CD14啟動子在肝細胞中的轉錄活性 24 第二節 以EMSA分析蛋白質與CD14啟動子區域結合情形 24 第三節 分析CD14-376至-232區域的轉錄活性 25 第四節 GATA-1抑制CD14啟動子部分的活性 25 第五節 PMA對於CD14啟動子其轉錄活性的影響 26 第六節 分析CD14 mRNA 26 第五章 討論 28 第六章 參考文獻 32 表 36 圖 38 個人資料 50

    1. Perez Fernandez, T., P. Lopez Serrano, E. Tomas, M.L. Gutierrez, J.L. Lledo, G. Cacho, C. Santander, and C.M. Fernandez Rodriguez, Diagnostic and therapeutic approach to cholestatic liver disease. Rev Esp Enferm Dig, 2004. 96(1): p. 60-73.
    2. Elferink, R.O., Cholestasis. Gut, 2003. 52 Suppl 2: p. ii42-8.
    3. Meier-Abt, P.J., Cellular mechanisms of intrahepatic cholestasis. Drugs, 1990. 40 Suppl 3: p. 84-97.
    4. Balistreri, W.F., Intrahepatic cholestasis. J Pediatr Gastroenterol Nutr, 2002. 35 Suppl 1: p. S17-23.
    5. McGill, J.M. and A.P. Kwiatkowski, Cholestatic liver diseases in adults. Am J Gastroenterol, 1998. 93(5): p. 684-91.
    6. Schmucker, D.L., M. Ohta, S. Kanai, Y. Sato, and K. Kitani, Hepatic injury induced by bile salts: correlation between biochemical and morphological events. Hepatology, 1990. 12(5): p. 1216-21.
    7. Benedetti, A., D. Alvaro, C. Bassotti, A. Gigliozzi, G. Ferretti, T. La Rosa, A. Di Sario, L. Baiocchi, and A.M. Jezequel, Cytotoxicity of bile salts against biliary epithelium: a study in isolated bile ductule fragments and isolated perfused rat liver. Hepatology, 1997. 26(1): p. 9-21.
    8. Li, D., J. Sun, H. Sun, F. Li, F. Liu, and S. Liu, Bile salt induces apoptosis of hepatocytes: the mechanism of hepatic function injury during obstructive jaundice. Zhonghua Wai Ke Za Zhi, 1998. 36(10): p. 624-6, 117.
    9. Rodrigues, C.M. and C.J. Steer, Bile acids and hepatocyte apoptosis: living/leaving life in the Fas lane. Gastroenterology, 1999. 117(3): p. 732-6.
    10. Rust, C., L.M. Karnitz, C.V. Paya, J. Moscat, R.D. Simari, and G.J. Gores, The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent survival signaling cascade. J Biol Chem, 2000. 275(26): p. 20210-6.
    11. Qiao, L., S.I. Han, Y. Fang, J.S. Park, S. Gupta, D. Gilfor, G. Amorino, K. Valerie, L. Sealy, J.F. Engelhardt, S. Grant, P.B. Hylemon, and P. Dent, Bile acid regulation of C/EBPbeta, CREB, and c-Jun function, via the extracellular signal-regulated kinase and c-Jun NH2-terminal kinase pathways, modulates the apoptotic response of hepatocytes. Mol Cell Biol, 2003. 23(9): p. 3052-66.
    12. Faubion, W.A., M.E. Guicciardi, H. Miyoshi, S.F. Bronk, P.J. Roberts, P.A. Svingen, S.H. Kaufmann, and G.J. Gores, Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest, 1999. 103(1): p. 137-45.
    13. Stravitz, R.T., Y.P. Rao, Z.R. Vlahcevic, E.C. Gurley, W.D. Jarvis, and P.B. Hylemon, Hepatocellular protein kinase C activation by bile acids: implications for regulation of cholesterol 7 alpha-hydroxylase. Am J Physiol, 1996. 271(2 Pt 1): p. G293-303.
    14. Jones, B.A., Y.P. Rao, R.T. Stravitz, and G.J. Gores, Bile salt-induced apoptosis of hepatocytes involves activation of protein kinase C. Am J Physiol, 1997. 272(5 Pt 1): p. G1109-15.
    15. Rao, Y.P., R.T. Stravitz, Z.R. Vlahcevic, E.C. Gurley, J.J. Sando, and P.B. Hylemon, Activation of protein kinase C alpha and delta by bile acids: correlation with bile acid structure and diacylglycerol formation. J Lipid Res, 1997. 38(12): p. 2446-54.
    16. Lilly, J.R., Surgical jaundice in infancy. Ann Surg, 1977. 186(5): p. 549-58.
    17. Ohi, R. and M. Ibrahim. Biliary atresia. Semin Pediatr Surg 1992 May [cited 1 2]; 115-24].
    18. McKiernan, P.J., Neonatal cholestasis. Semin Neonatol, 2002. 7(2): p. 153-65.
    19. Tracy, T.F., Jr., P. Dillon, E.S. Fox, K. Minnick, and C. Vogler, The inflammatory response in pediatric biliary disease: macrophage phenotype and distribution. J Pediatr Surg, 1996. 31(1): p. 121-5; discussion 125-6.
    20. Ahmed, A.F., M. Nio, H. Ohtani, H. Nagura, and R. Ohi, In situ CD14 expression in biliary atresia: comparison between early and late stages. J Pediatr Surg, 2001. 36(1): p. 240-3.
    21. Shih, H.H., T.M. Lin, J.H. Chuang, H.L. Eng, S.H. Juo, F.C. Huang, C.L. Chen, and H.L. Chen, Promoter polymorphism of the CD14 endotoxin receptor gene is associated with biliary atresia and idiopathic neonatal cholestasis. Pediatrics, 2005. 116(2): p. 437-41.
    22. Eng, H.L., C.H. Wang, C.H. Chen, M.H. Chou, C.T. Cheng, and T.M. Lin, A CD14 promoter polymorphism is associated with CD14 expression and Chlamydia-stimulated TNF alpha production. Genes Immun, 2004. 5(5): p. 426-30.
    23. Todd, R.F., 3rd, L.M. Nadler, and S.F. Schlossman, Antigens on human monocytes identified by monoclonal antibodies. J Immunol, 1981. 126(4): p. 1435-42.
    24. Todd, R.F., 3rd, A. Van Agthoven, S.F. Schlossman, and C. Terhorst, Structural analysis of differentiation antigens Mo1 and Mo2 on human monocytes. Hybridoma, 1982. 1(3): p. 329-37.
    25. Haziot, A., S. Chen, E. Ferrero, M.G. Low, R. Silber, and S.M. Goyert, The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J Immunol, 1988. 141(2): p. 547-52.
    26. Simmons, D.L., S. Tan, D.G. Tenen, A. Nicholson-Weller, and B. Seed, Monocyte antigen CD14 is a phospholipid anchored membrane protein. Blood, 1989. 73(1): p. 284-9.
    27. Wright, S.D., R.A. Ramos, P.S. Tobias, R.J. Ulevitch, and J.C. Mathison, CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science, 1990. 249(4975): p. 1431-3.
    28. Kielian, T.L. and F. Blecha, CD14 and other recognition molecules for lipopolysaccharide: a review. Immunopharmacology, 1995. 29(3): p. 187-205.
    29. da Silva Correia, J., K. Soldau, U. Christen, P.S. Tobias, and R.J. Ulevitch, Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. transfer from CD14 to TLR4 and MD-2. J Biol Chem, 2001. 276(24): p. 21129-35.
    30. Guha, M. and N. Mackman, LPS induction of gene expression in human monocytes. Cell Signal, 2001. 13(2): p. 85-94.
    31. Kato, A., T. Ogasawara, T. Homma, H. Saito, and K. Matsumoto, Lipopolysaccharide-binding protein critically regulates lipopolysaccharide-induced IFN-beta signaling pathway in human monocytes. J Immunol, 2004. 172(10): p. 6185-94.
    32. Finberg, R.W., F. Re, L. Popova, D.T. Golenbock, and E.A. Kurt-Jones, Cell activation by Toll-like receptors: role of LBP and CD14. J Endotoxin Res, 2004. 10(6): p. 413-8.
    33. Dobrovolskaia, M.A. and S.N. Vogel, Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect, 2002. 4(9): p. 903-14.
    34. Bazil, V., M. Baudys, I. Hilgert, I. Stefanova, M.G. Low, J. Zbrozek, and V. Horejsi, Structural relationship between the soluble and membrane-bound forms of human monocyte surface glycoprotein CD14. Mol Immunol, 1989. 26(7): p. 657-62.
    35. Bufler, P., G. Stiegler, M. Schuchmann, S. Hess, C. Kruger, F. Stelter, C. Eckerskorn, C. Schutt, and H. Engelmann, Soluble lipopolysaccharide receptor (CD14) is released via two different mechanisms from human monocytes and CD14 transfectants. Eur J Immunol, 1995. 25(2): p. 604-10.
    36. Tapping, R.I. and P.S. Tobias, Cellular binding of soluble CD14 requires lipopolysaccharide (LPS) and LPS-binding protein. J Biol Chem, 1997. 272(37): p. 23157-64.
    37. Haziot, A., G.W. Rong, V. Bazil, J. Silver, and S.M. Goyert, Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-alpha production by cells in whole blood. J Immunol, 1994. 152(12): p. 5868-76.
    38. Landmann, R., W. Zimmerli, S. Sansano, S. Link, A. Hahn, M.P. Glauser, and T. Calandra, Increased circulating soluble CD14 is associated with high mortality in gram-negative septic shock. J Infect Dis, 1995. 171(3): p. 639-44.
    39. Landmann, R., T. Calandra, and W. Zimmerli, Soluble CD14 in septic shock. Prog Clin Biol Res, 1995. 392: p. 375-80.
    40. Gluck, T., J. Silver, M. Epstein, P. Cao, B. Farber, and S.M. Goyert, Parameters influencing membrane CD14 expression and soluble CD14 levels in sepsis. Eur J Med Res, 2001. 6(8): p. 351-8.
    41. Bas, S., B.R. Gauthier, U. Spenato, S. Stingelin, and C. Gabay, CD14 is an acute-phase protein. J Immunol, 2004. 172(7): p. 4470-9.
    42. Liu, S., L.S. Khemlani, R.A. Shapiro, M.L. Johnson, K. Liu, D.A. Geller, S.C. Watkins, S.M. Goyert, and T.R. Billiar, Expression of CD14 by hepatocytes: upregulation by cytokines during endotoxemia. Infect Immun, 1998. 66(11): p. 5089-98.
    43. Su, G.L., K. Dorko, S.C. Strom, A.K. Nussler, and S.C. Wang, CD14 expression and production by human hepatocytes. J Hepatol, 1999. 31(3): p. 435-42.
    44. Zhang, D.E., C.J. Hetherington, S. Tan, S.E. Dziennis, D.A. Gonzalez, H.M. Chen, and D.G. Tenen, Sp1 is a critical factor for the monocytic specific expression of human CD14. J Biol Chem, 1994. 269(15): p. 11425-34.
    45. Pan, Z., L. Zhou, C.J. Hetherington, and D.E. Zhang, Hepatocytes contribute to soluble CD14 production, and CD14 expression is differentially regulated in hepatocytes and monocytes. J Biol Chem, 2000. 275(46): p. 36430-5.
    46. Ko, L.J. and J.D. Engel, DNA-binding specificities of the GATA transcription factor family. Mol Cell Biol, 1993. 13(7): p. 4011-22.
    47. Lange-Dohna, C., U. Zeitschel, F. Gaunitz, J.R. Perez-Polo, V. Bigl, and S. Rossner, Cloning and expression of the rat BACE1 promoter. J Neurosci Res, 2003. 73(1): p. 73-80.

    下載圖示 校內:2009-02-04公開
    校外:2011-02-04公開
    QR CODE