簡易檢索 / 詳目顯示

研究生: 王駿之
Wang, Chun-Chih
論文名稱: 利用電壓相位控制法產生可移動式單粒子捕捉陷阱區
Adjustable Trapping Position for Single Particles Using Voltage Phase Controlled Method
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 26
中文關鍵詞: 細胞操控細胞阻抗量測介電泳效應可移動式捕捉區
外文關鍵詞: Cell manipulation, Cell impedance measurement, Voltage phase controlled method, Dielectrophoresis, Adjustable trapping position
相關次數: 點閱:110下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單一細胞的操控一直是許多生物工程上的核心技術,此種核心技術對於許多更進一步的研究都是必要的。對單細胞進行阻抗量測時,細胞的定位位置於量測有密切關係,因此本論文提出了一種新的定位技術,利用交流電熱效應,負介電泳效應與透過電壓相位控制方法,搭配分離式電極結構,產生一可調變式的電壓場型,即可移動式的捕捉區域,來捕捉並定位單粒子。在過去的研究中,量測與捕捉電極互相耦合式的結構,易因量測時受電極間的電容效應(極際電容)而影響量測結果,且簡單的電壓配置未能於系統中產生最佳化的電壓場型以進行單粒子的操控與捕捉,因此,獨立式的量測與捕捉電極,和利用單一結構的再分離化,使得電極可搭配多組輸入端的電壓振幅與相位,產生更優於過去在系統中的電壓場型,進行更有效的單粒子操控與嶄新的定位模式。以往的定位系統中,不論是物理式的或是氣相式的捕捉結構,皆只能於結構中產生固定位置的捕捉區,而利用此新穎的技術,可於單一結構中產生出變動式的捕捉定位區域,突破以往生物晶片領域在捕捉與定位能力上的限制,並能應用與整合於其它量測系統上。

    The analysis of single cells has grown great attention in these years. The manipulation of single cells is an important research. This study presents a technique using a designed structure to generate an adjustable trapping position by utilizing voltage phase controlled method (VPC) method and negative dielectrophoresis effect improving the previous capture method integrated in biochip systems. The new structure is composed of a pair of line measurement electrodes in the center and symmetrical arc geometry trapping electrode. VPC method is used with negative dielectrophoresis (DEP) force to direct single cells instead of a fixed voltage source. Numerical simulations are conducted to compute and analyze the effects of the voltage amplitude and phase. By voltage operation, the electric field in the capture region can be controlled to generate trapping positions at different height and manipulate three movement types of single particles. The experiments are performed to demonstrate that a particle can be precisely trapped on the selected site in vertical and horizontal direction, and the particle manipulation including particle capture, particle release is achieved. Furthermore, the single particle is captured, measured, released, and the same process is done twice to demonstrate the precision of the positioning. Experimental results showed that the impedance error is fewer than 2% for the proposed VPC method and the electrode layout.

    中文摘要 I ABSTRACT II AKNOWLEDGEMENT III CONTENTS IV FIGURE LIST VI CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation 1 1.3 Topic 1 1.4 Content Description 2 CHAPTER 2 THEORY 3 2.1 DEP Force Theory 3 2.2 VPC Method 4 CHAPTER 3 Electrode Design 6 3.1 Design of the Structure 6 3.2 DBMLE and DBTRE 8 CHAPTER 4 CHIP FABRICATION AND EXPERIMENTAL SETUP 10 4.1 Chip Fabrication 10 4.2 Preparation of Latex Beads 13 4.3 Observation and Measurement System 13 4.4 Experimental Setup 14 CHAPTER 5 RESULTS AND DISCUSSION 15 5.1 Analysis of Electric Field Distribution of Trapping/Release Mode 15 5.2 Analysis of Electric Field Distribution of the Adjustable Trapping Mode 18 5.3 Measurement Results of Positioning 20 5.4 Experimental Results of the Adjustable Trapping Position 22 CHAPTER 6 CONCLUSIONS 24 REFERENCE 25

    [1] Fortina, P., Surrey, S., Kricka, L., “Molecular diagnostics: Hurdles for clinical implementation,” Trends in Molecular Medicine, 8, 264–266. 2002.
    [2] Gilchrist, K.H., Giovangrandi, L., Kovacs, G.T.A., “General purpose, field-portable cell-based biosensor platform,” International Conference on Solid-State Sensors and Actuators, The 11th, pp. 10–14. 2001.
    [3] Jang, L.S., Huang, P.H., Lan, K.C., “Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes”, Biosensors and Bioelectronics, 24, 3637–3644. 2009.
    [4] Bakajin, O., Carlson, R., Chou, C.F., Chan, S.S., Gabel, C., Knight, J., Cox, T., “Sizing, fractionation and mixing of biological objects via microfabricated devices,” Austin, R.H., Solid-state sensor and actuator workshop, 116–119. 1998.
    [5] Andersson, H., van der Wijngaart, W., Enoksson, P., Stemme, G., “Micromachined flow-through filter-chamber for chemical reactions on beads,” Sensors and Actuators, 67, 203–208. 2000.
    [6] Carlson, R., Gabel, C., Chan, S., Austin, R., “Self-sorting of white blood cells in a lattice”, Physical Review Letters, 79, 2149–2152. 2006.
    [7] Castellanos, A., Ramos, A., Gonzalez, A., Green, N.G., Morgan, H., “Electrohydrodynamics and dielectrophoresis in microsystems: scaling laws ,“ Journal of Physics D: Applied Physics, 36, 2579–2584. 2003.
    [8] Lan, K.C., Jang, L.S., “Integration of single-cell trapping and impedance measurement utilizing microwell electrodes,” Biosensors and Bioelectronics, 26, 2025–2031. 2011.
    [9] Wang, J.W., Wang, M.H., Jang, L.S., “Effects of electrode geometry and cell location on single cell impedance measurement,” Biosensors and Bioelectronics, 25, 1271–1276. 2010.
    [10] Pohl, H.A., “The motion and precipitation of suspensoids in divergent electric fields,” Journal of Applied Physics, 22, pp.869-871. 1951.

    無法下載圖示 校內:2014-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE