簡易檢索 / 詳目顯示

研究生: 楊承學
Yang, Chen-Hsueh
論文名稱: 高分子凝膠之依時性破壞及表面穩定性分析
Analyses on Time-dependent Fracture and Surface Instabilities of Polymeric Gels
指導教授: 林育芸
Lin, Yu-Yun
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 134
中文關鍵詞: 皺褶穩定性大變形孔隙彈性材料孔隙黏彈性材料黏著元素瞬時能量釋放率
外文關鍵詞: wrinkling instability, large deformation, poroelastic materials, poroviscoelastic materials, cohesive zone elements, instantaneous energy release rate
相關次數: 點閱:181下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子凝膠係由固體網絡以及孔隙流體所組成,當孔隙流體流入固態網絡內時,凝膠將隨之潤漲(swelling),當孔隙流體由固態網絡流出時,凝膠將隨之乾縮(shrinking)。高分子凝膠的力學性質在許多應用上顯得重要,包括破壞性質。凝膠依時性破壞之現象主要係與受外部載重所產生的初始孔隙壓力場及邊界滲透條件作用下所引起的流體流動有關。
    在本文中,將分析具長度2a之中間裂縫之孔隙彈性體受遠端單軸應力或應變作用下,同時發生固體網絡變形與孔隙流體流動,探討當遠端邊界及近端裂縫面受不同滲透條件的四種混合形態之破壞問題。本文採用J積分原理,利用數值模擬於裂縫尖端處放置黏著元素(cohesive element)計算瞬時能量釋放率。數值結果與短時流動之理論預測值相吻合。當邊界之孔隙壓力值與受遠端載重所造成的初始孔隙壓力場值有所差異時,將產生近端或受遠端邊界影響之流動,進而影響曲線變化。當流動時間約為時,其中是材料幾何長度,是孔洞材料之壓密係數,材料已完成流動行為,其值達到完成流動狀態(drained state)之極限值。但完成流動狀態之值未必是曲線之最大值,特別是在應變控制條件下,當滲透邊界的孔隙壓力值與初始孔隙壓力值之差值為正值時。在應力控制條件下,最大值若發生在完成流動狀態前,其發生之原因不僅與受滲透邊界的孔隙壓力值與初始孔隙壓力值之差值有關外,亦與滲透條件之位置相關。
    當凝膠之固體網絡具黏彈行為時,其破壞依時現象將同時受黏彈變形行為及流體流動行為所影響。本文分析具中間裂縫之孔隙黏彈體受雙軸遠端應力,且流體流動僅限於裂縫附近之破壞問題。當流體完成流動之時間與黏彈性網絡達到鬆弛時間有明顯差異時,其曲線將顯現出兩階段之行為。當材料達到鬆弛之時間在流體完成流動前,其值變化趨勢將由未完成鬆弛-未完成流動狀態(unrelaxed-undrained state)之極限值升至完成鬆弛-未完成流動狀態(relaxed-undrained state)之極限值,然值於孔隙流體完成流動行為後,即再升至完成鬆弛-完成流動狀態(relaxed-drained state)之極限值。當材料達到鬆弛之時間於孔隙流體完成流動之後時,值變化將從未完成鬆弛-未完成流動狀態(unrelaxed-undrained state)之極限值先升至未完成鬆弛-完成流動狀態(unrelaxed-drained state)之極限值,進而再升至完成鬆弛-完成流動狀態(relaxed-drained state)之極限值.本文成功預測上述四類狀態之極限值,並與所求之數值解相吻合。
    若凝膠之固態網絡可承受極大變形,潤漲後其體積可為原體積之數倍大。由於側向束制的關係,所產生的側向壓力使其表面微小缺陷形成皺摺(wrinkling)現象。皺摺現象的發生與凝膠潤漲後的壓縮性,邊界之束制條件以及凝膠之厚度有關.本文藉由微擾分析以得到當凝膠在任意側向束制條件下之穩定性特徵方程式,並探討在特定束制條件下凝膠發生皺摺圖騰之可能性。在雙軸束制條件相同下,任意方向皆具相同皺摺波長;當雙軸束制條件不同時,不同方向則具有不同皺摺波長。皺褶圖騰為所有方向之可能組合。

    Polymeric gels, which consist of a solid polymer network and liquid solvents, swell when the solvents are absorbed into the polymer network, and shrink when the solvents flow out of the polymer network. Mechanical properties of polymeric gels, including fracture properties, are important for many applications.
    The time-dependent fracture phenomenon of polymeric gels is affected by fluid diffusion, which is strongly influenced by the initial pore pressure field attributed to loading and permeability conditions on the boundaries. In this study, the concurrent solid deformation and fluid migration for a center crack of finite length in a poroelastic medium subjected to uniaxial remote stress or strain is analyzed. Four mixed types of permeability conditions on the remote boundaries and the crack faces are considered. The instantaneous fracture energy is evaluated by a novel method, which uses J-integral around the cohesive zone embedded ahead of the crack tip in the simulations. The numerical results of are validated with the asymptotes predicted by stress intensities at small flow times. When there is a difference between the imposed pore pressure and the initial pore pressure caused by applying loading on the boundaries, the variation in is affected by short and long ranges of fluid flow, and reaches its drained limit at a time on the order of , where is the consolidation coefficient of porous materials. The drained limit may not be the maximum value of , especially when the difference on the remote boundaries is positive under strain control. For stress-control cases, whether the maximum occurs before drained state depends not only on the difference in pore pressure but also on where the permeable boundaries are.
    When a solid network of a polymeric gel is found to exhibit viscoelastic behavior, the fracture phenomena can be affected by both flow-induced and viscoelastic deformations. This study analyzes the concurrent deformation of a mode-I center crack in a poroviscoelastic medium subjected to biaxial remote stresses for short-distance fluid flow. For the drainage time differing from the viscoelastic relaxation time, the curve exhibits a two-stage behavior. When viscoelastic relaxation is completed before fluid drainage, the value of at first changes from the unrelaxed-undrained limit to the relaxed-undrained limit and continues to increase till the relaxed-drained limit. When viscoelastic relaxation is postponed until after fluid drainage, the value of increases till the unrelaxed-drained limit and continues to increase till the relaxed-drained limit. This study predicts the four aforementioned limits and shows excellent agreements with numerical results.
    Polymeric gels may incur large deformations and increase the volume by several times after swelling. Owing to the restrictions on lateral expansions and surface imperfections, the instabilities may appear in the form of wrinkling. Wrinkling is strongly governed by the compressibility of swollen gel, confinements and gel thickness. This study investigates surface wrinkling of a gel layer under arbitrary lateral confinements in the equilibrium state of swelling based on perturbation analysis. This work also discusses possible gel-solvent systems of wrinkling under different confinements. At equal biaxial confinements, the wrinkle pattern is a combination of plane waves with the same wavelength in all directions. Meanwhile, at non-equal biaxial confinements, the wrinkle pattern may be a sum of plane waves with dissimilar wavelengths and corresponding directions.

    Abstract I 中文摘要 III 誌 謝 VI Contents VII List of Figures IX List of Tables XIV Notation XV Chapter 1 Introduction 1 Chapter 2 Constitutive Models and Field Equations 14 2.1 Poroelastic Material 14 2.2 Poroviscoelastic Material 17 2.3 Largely-deformed Poroelastic Materials 20 Chapter 3 Effects of Permeability Conditions on Time-Dependent Fracture of Poroelastic media 25 3.1 Mode-I crack problems in a poroelastic medium 25 3.2 Decomposition of Fracture Problem 25 3.3 Near-crack-tip fields 28 3.4 Finite element models 33 3.5 Numerical results 35 3.5.1 Problem I and sub-problems IIa, IIIa and IVa 35 3.5.2 Sub-problems IIb, IIIb and IVb 38 3.5.3 Fracture problems II, III and IV 42 Chapter 4 Time-dependent Fracture of Mode-I Cracks in Poroviscoelastic Media 69 4.1 A mode-I crack in a poroviscoelastic medium 69 4.2 Near-crack-tip fields 69 4.3 Finite element models 72 4.4 Numerical results 74 4.4.1 Cracks in poroelastic media subjected to biaxial stresses 74 4.4.2 Cracks in poroviscoelastic media 77 Chapter 5 Surface Wrinkles of Swelling Gels under Arbitrary Lateral Confinements 89 5.1 Problem statement 89 5.2 Perturbation analysis of an arbitrary wave pattern 89 5.3 Numerical results 97 Chapter 6 Conclusions 112 References 118 Appendix 124 Appendix A 124 Appendix B 126 Appendix C 127 Appendix D 129

    Atkinson, C. and Smelser, R.E., Invariant integrals for thermo-viscoelasticity and applications, Int. J. Solids Struct. 18, 533-549, 1982
    Atkinson, C. and Craster, R. V., Plane-strain fracture in poroelastic media, Proc. R. Soc. London Ser. A-Math. Phys. Eng. Sci., 434, 605-633, 1991
    Atkinson, C. and Craster, R. V., The application of invariant integrals in diffusive elastic solids, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 339, 231-263, 1992
    Atkinson, C. and Craster, R. V., A singular perturbation approach to integral-equations occurring in poroelasticity, IMA J. Appl. Math., 52, 221-252, 1994
    Beebe, D. J., Moore, J. S., Bauer, J. M., Yu, Q., Liu, R. H., Devadoss, C. and Jo, B. H., Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature, 404, 588-590, 2000
    Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155-164, 1941
    Biot, M. A., Theory of deformation of a porous viscoelastic anisotropic solid, J. Appl. Phys., 27, 459-467, 1956
    Biot, M. A., Thermoelasticity and irreversible thermodynamics, J. Appl. Phys., 27, 240-253, 1956
    Biot, M. A., Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 1482-1498, 1962
    Biot, M.A., Surface instability of rubber in compression. Appl. Sci. Res. 12, 168-182, 1963
    Biot, M.A., Mechanics of incremental deformations. Wiley, New York, 1965
    Bonn, D., Kellay, H., Prochnow, M., Ben-Djemiaa, K. and Meunier, J., Delayed fracture of an inhomogeneous soft solid, Science, 280, 265-267, 1998
    Boone, T. J. and Ingraffea, A. R., A numerical procedure for simulation of hydraulically-driven fracture propagation in poroelastic media, Int. J. Numer. Anal. Methods Geomech., 14, 27-47, 1990
    Bouklas, N. and Huang, R., Swelling kinetics of polymer gels: comparison of linear and nonlinear theories, Soft Matter, 8, 8194-8203, 2012
    Bouklas, N., Landis, C. M. and Huang, R., Effect of solvent diffusion on crack-tip fields and driving force for fracture of hydrogels, J. Appl. Mech.-Trans. ASME, 82, 16, 2015
    Cao, Y. P. and Hutchinson, J. W., From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling, Proc. R. Soc. A-Math. Phys. Eng. Sci., 468, 94-115, 2012
    Chan, E. P., Smith, E. J., Hayward, R. C. and Crosby, A. J., Surface wrinkles for smart adhesion, Adv. Mater., 20, 711-716, 2008
    Cheng, A.H.D., Sidauruk, P. and Abousleiman, Y., Approximate inversion of the Laplace transform, Mathematica J., 4, 76-82, 1994
    Chester, S. A. and Anand, L., A coupled theory of fluid permeation and large deformations for elastomeric materials, J. Mech. Phys. Solids, 58, 1879-1906, 2010
    Chester, S. A. and Anand, L., A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: application to thermally responsive gels, J. Mech. Phys. Solids, 59, 1978-2006, 2011
    Craster, R. V. and Atkinson, C., Interfacial fracture in elastic diffusive media, Int. J. Solids Struct., 29, 1463-1498, 1992
    Craster, R. V. and Atkinson, C., Shear cracks in thermoelastic and poroelastic media, J. Mech. Phys. Solids, 40, 887-924, 1992
    Craster, R. V. and Atkinson, C., Crack problems in a poroelastic medium - an asymptotic approach, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 346, 387-428, 1994
    Craster, R. V. and Atkinson, C., On finite-length cracks and inclusions in poroelasticity, Q. J. Mech. Appl. Math., 49, 311-335, 1996
    Craster, R.V. and Atkinson, C., Mechanics of poroelastic media, Kluwer Academic Publishers, 23, 1996
    DiSilvestro, M. R., Zhu, Q. L., Wong, M., Jurvelin, J. S. and Suh, J. K. F., Biphasic poroviscoelastic simulation of the unconfined compression of articular cartilage: I - Simultaneous prediction of reaction force and lateral displacement, J. Biomech. Eng.-Trans. ASME, 123, 191-197, 2001
    Duncan, R., The dawning era of polymer therapeutics, Nat. Rev. Drug Discov., 2, 347-360, 2003
    Flory, P.J., Principles of polymer chemistry. Cornell University Press, Ithaca, NY, 1953
    Flory, P. J., Statistical mechanics of swelling of network structures, J. Chem. Phys., 18, 108-111, 1950
    Gent, A. N. and Cho, I. S., Surface instabilities in compressed or bent rubber blocks, Rubber Chem. Technol., 72, 253-262, 1999
    Guvendiren, M., Burdick, J. A. and Yang, S., Kinetic study of swelling-induced surface pattern formation and ordering in hydrogel films with depth-wise crosslinking gradient, Soft Matter, 6, 2044-2049, 2010
    Guvendiren, M., Burdick, J. A. and Yang, S., Solvent induced transition from wrinkles to creases in thin film gels with depth-wise crosslinking gradients, Soft Matter, 6, 5795-5801, 2010
    Hohlfeld, E. and Mahadevan, L., Unfolding the sulcus, Phys. Rev. Lett., 106, 4, 2011
    Hong, W., Zhao, X. H., Zhou, J. X. and Suo, Z. G., A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids, 56,1779-1793, 2008
    Hong, W., Liu, Z. S. and Suo, Z. G., Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, Int. J. Solids Struct., 46, 3282-3289, 2009
    Hong, W., Zhao, X. H. and Suo, Z. G., Formation of creases on the surfaces of elastomers and gels, Appl. Phys. Lett., 95, 3, 2009
    Huggins, M. L., Solutions of long chain compounds, J. Chem. Phys., 9, 440-440, 1941
    Kang, M. K. and Huang, R., Swell-induced surface instability of confined hydrogel layers on substrates, J. Mech. Phys. Solids, 58, 1582-1598, 2010
    Knauss, W.G., Deformaion and fracture of high polymers, Plenum Press, 501, 1973
    Kempson, G.E., Joints and synovial fluid, II, ed., L. Sokoloff, Academic Press, New York, 1980.
    Luo, Y. and Shoichet, M. S., A photolabile hydrogel for guided three-dimensional cell growth and migration, Nat. Mater., 3, 249-253, 2004
    Mak, A. F., The apparent viscoelastic behavior of articular-cartilage - the contributions from the intrinsic matrix viscoelasticity and interstitial fluid-flows, J. Biomech. Eng.-Trans. ASME, 108, 123-130, 1986
    Mark, J.E., Physical properties of polymers handbook, New York, NY, 2007
    Matsuo, E. S. and Tanaka, T., Patterns in shrinking gels, Nature, 358, 482-485, 1992
    Noselli, G., Lucantonio, A., McMeeking, R. M. and DeSimone, A., Poroelastic toughening in polymer gels: a theoretical and numerical study, J. Mech. Phys. Solids, 94, 33-46, 2016
    Nowak, A. P., Breedveld, V., Pakstis, L., Ozbas, B., Pine, D. J., Pochan, D. and Deming, T. J., Rapidly recovering hydrogel scaffolds from self-assembling diblock copolypeptide amphiphiles, Nature, 417, 424-428, 2002
    Nowinski, J. L., Surface instability of a half-space under high 2-dimensional compression, J. Frankl. Inst.-Eng. Appl. Math., 288, 367-376,1969
    Onuki, A., Theory of pattern-formation in gels - surface folding in highly compressible elastic bodies, Phys. Rev. A, 39, 5932-5948, 1989
    Orwoll, R. A. and Arnold, P. A., Physical properties of polymers handbook, Kluwer Academic Publishers, 233, 2007
    Pilnik, W. and Rombouts, F. M., Polysaccharides and food-processing, Carbohydr. Res., 142, 93-105, 1985
    Pizzocolo, F., Huyghe, J. M. and Ito, K., Mode I crack propagation in hydrogels is step wise, Eng. Fract. Mech., 97, 72-79, 2013
    Rice, J. R. and Cleary, M. P., Some basic stress diffusion solutions for fluid-saturated elastic porous-media with compressible constituents, Rev. Geophys., 14, 227-241, 1976
    Rivlin, R. S., Large elastic deformations of isotropic materials. 1. fundamental concepts, Philos. Trans. R. Soc. London, Ser. A, 240, 459-508, 1948
    Schapery, R. A., Theory of crack initiation and growth in viscoelastic media .1. theoretical development, Int. J. Fract., 11, 141-159, 1975
    Schapery, R. A., Theory of crack initiation and growth in viscoelastic media .2. approximate methods of analysis, Int. J. Fract., 11, 369-388, 1975
    Schapery, R. A., correspondence principles and a generalized j integral for large deformation and fracture-analysis of viscoelastic media, Int. J. Fract., 25, 195-223, 1984
    Skrzeszewska, P. J., Sprakel, J., de Wolf, F. A., Fokkink, R., Stuart, M. A. C. and van der Gucht, J., Fracture and self-healing in a well-defined self-assembled polymer network, Macromolecules, 43, 3542-3548, 2010
    Southern, E. and Thomas, A. G., Effect of constraints on equilibrium swelling of rubber vulcanizates, J. Polym. Sci. A, 3, 641-& ,1965
    Sun, J.Y., Zhao, X., Illeperuma, W., Chaudhuri, O., Oh, K. H., Mooney, D. J., Vlassak, J. J. and Suo, Z., Highly stretchable and tough hydrogels, Nature, 489, 133-136, 2012
    Tanaka, H., Tomita, H., Takasu, A., Hayashi, T. and Nishi, T., Morphological and kinetic evolution of surface patterns in gels during the swelling process - evidence of dynamic pattern ordering, Phys. Rev. Lett., 68, 2794-2797, 1992
    Tanaka, T., Sun, S. T., Hirokawa, Y., Katayama, S., Kucera, J., Hirose, Y. and Amiya, T., Mechanical instability of gels at the phase-transition, Nature, 325, 796-798, 1987
    Treloar, L. R. G., The physics of rubber elasticity. Oxford University Press, Oxford, 1975
    Trujillo, V., Kim, J. and Hayward, R. C., Creasing instability of surface-attached hydrogels, Soft Matter, 4, 564-569, 2008
    Usmani, S. A. and Beatty, M. F., Surface instability of a highly elastic half-space, J. Elast., 4, 249-263, 1974
    Wang, X. and Hong, W., Delayed fracture in gels, Soft Matter, 8, 8171-8178, 2012
    Ward, I. M. and Sweeney, J., An Introduction to the Mechanical Properties of Solid Polymers. Wiley, New York, 2004
    Wilson, W. K. and Yu, I. W., Use of the j-integral in thermal-stress crack problems, Int. J. Fract., 15, 377-387, 1979
    Yang, C. H. and Lin, Y. Y., Surface wrinkles of swelling gels under arbitrary lateral confinements, Eur. J. Mech. A-Solids, 45, 90-100, 2014
    Yang, C. H. and Lin, Y. Y., Time-dependent fracture of mode-I cracks in poroviscoelastic media, Eur. J. Mech. A-Solids, 69, 78-87, 2018
    Yang, S., Khare, K. and Lin, P. C., Harnessing surface wrinkle patterns in soft matter, Adv. Funct. Mater., 20, 2550-2564, 2010

    下載圖示 校內:2023-06-25公開
    校外:2023-06-25公開
    QR CODE