| 研究生: |
黃奕誠 Huang, Yi-Cheng |
|---|---|
| 論文名稱: |
土壤內沖蝕行為探討 A Study on Internal Erosion of Soil |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 沖蝕 、直接剪力試驗 、低塑性粉土 |
| 外文關鍵詞: | erosion, direct shear test, low plasticity silt |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣雨量充沛且多集中於夏季,因此,降雨所造成的沖蝕行為對土壤之影響不可忽視。根據目前求得現地土壤強度之試驗,以直剪試驗為較簡單且快速的方法,而為探討沖蝕對土壤強度之影響,開發一「沖蝕直剪試驗儀」,此試驗儀不僅能進行入滲沖蝕試驗,亦能進行剪動試驗,以求得土壤之剪力強度。
本研究藉由沖蝕直剪試驗儀,模擬現地受入滲沖蝕後,造成土壤細粒料流失,藉此探討沖蝕作用對土壤力學行為之影響。
根據試驗分析結果,不同正向應力與細粒料含量影響沖蝕行為及剪力強度。整體而言,土壤孔隙比愈大,滲流係數愈大,且流失的細粒料含量高,達滲流沖蝕破壞所需時間較短。
此外,土壤剪力強度受粗顆粒與細顆粒控制,由試驗結果可知,細粒料含量10%與20%屬於粗顆粒控制,受沖蝕擾動後細粒料流失,使土壤之強度增大;反之,細粒料含量30%正落於粗細顆粒轉換區間,受沖蝕擾動後土壤之剪力強度較低。綜觀上述之結果,細粒料含量與正向應力,對土壤強度及受沖蝕行為之影響甚大。
Due to the abundant rainfall in Taiwan, the erosion behavior caused by rainfall cannot be ignored. The easiest and most popular way to obtain soil shear strength is direct shear test measurement. This research designed and developed a Seepage Flow Direct Shear apparatus (SFDS) to simulate the seepage flow behavior caused by fines erosion in the field to discuss how fines erosion impacts the soil behavior.
According to the test results different normal stress and fines content affects the seepage flow behavior and shear strength. Overall, while the soil void ratio increases the coefficient of permeability and erosion of fines content increases, causing erosion time at failure to be short.
Coarse and fine grains control the soil shear strength. The test results shows that when the fines content FC = 10% and 20% controlled by coarse grain, the soil strength is stronger after fines seepage flow erosion. On the other hand, when the fines content FC = 30% located in the transition zone, the soil strength will be weaker after seepage flow erosion. In summary, the fines content and normal stress have a huge impact on soil strength and erosion behavior.
1.何志麟(2012),「低塑性粉土內沖蝕性質之研究─驟變壓力差試驗狀況」,碩士論文,國立成功大學土木工程研究所。
2.吳偉特、楊騰芳(1987),「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74 頁。
3.沈茂松(2000),實用土壤力學試驗,第七版,臺北:文笙書局。
4.呂銘浩(2008),「不同砂土之阻尼比關係應用於減震箱之初步研究」,碩士論文,國立交通大學土木工程研究所。
5.李政忠(2011),「雲母細粒料含量對顆粒性土壤極限狀態參數之影響」,碩士論文,國立成功大學土木工程研究所。
6.周鴻昇(1994),「NGI單剪應力定體積與不排水狀況下砂土行為之研究」,碩士論文,國立台灣大學土木工程研究所。
7.林智偉(2006),「無塑性細粒料對砂質土壤液化阻抗之研究」,碩士論文,國立成功大學土木工程研究所。
8.林煒喬(2011),「不同圍壓狀態對低塑性粉土內部沖蝕性質之影響」,碩士論文,國立成功大學土木工程研究所。
9.林伯融(2013),「沖蝕直剪試驗儀試驗操作手冊」。
10.財團法人臺灣營建研究院(2007),「高雄捷運工程橘線CO1區段標SUO01車站連續壁滲水坍塌事故再分析與對應契約影響之研究報告」。
11. 財團法人臺灣營建研究院(2006),「高雄捷運工程橘線CO2區段標LUO09潛盾隧道坍陷原因鑑定報告」。
12.張育誠(2012),「地下水壓對頁岩邊坡穩定影響之研究」,碩士論文,國立成功大學土木工程研究所。
13.許琦、吳佳宜、潘建宏(2006),「剪力盒間隙對礫石剪力強度之影響」,岩盤工程研討會論文集,台南。
14.陳俊吉(2013),「低塑性粉土工程性質之研究」,博士論文,國立成功大學土木工程學研究所。
15.陳宣佑(2013),「顆粒組構對低塑性粉土內沖蝕性質影響」,碩士論文,國立成功大學土木工程研究所。
16.游家豪(2007),「低塑性細料對粉質砂土動態性質之影響」,碩士論文,國立成功大學土木工程研究所。
17.黃安斌、林志平、紀雲曜、古志生、蔡錦松、李德河、林炳森(2005),「台灣中西部粉土細砂液化行為分析」,地工技術, 第103期, 第5-30頁。
18.黃宏洋(2011),「深層崩壞之行為研究─以小林村獻肚山為例」,碩士論文,國立高雄應用科技大學土木工程與防災科技研究所。
19.萬鼎工程公司(2001),「高雄捷運紅橘線路網補充地質調查工程地質調查報告書」。
20.廖元憶(2005),「台灣西南沿海高細粒料含量砂土的探討」,碩士論文,國立成功大學土木工程研究所。
21.蕭吉良(2010),「低塑性粉土內部沖蝕性質之研究」,碩士論文,國立成功大學土木工程研究所。
22.謝忠勤(2002),「不同塑性黏土不排水剪力強度之研究」,碩士論文,國立成功大學土木工程研究所。
23.蘇聖惟(2000),「砂土排水與不排水受剪行為之比較」,碩士論文,國立台灣大學土木工程研究所。
24.ASTM D3080 (2011), "Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions."
25.ASTM D452-91(2013), "Standard Test Method for Sieve Analysis of Surfacing for Asphalt Roofing Products."
26.Bishop, A. W. (1966), "The Strength of Soils as Engineering Materials." Geotechnique, Vol. 16, No. 2, pp. 91-130.
27.Guo, P.(2008), "Modified Direct Shear Test for Anisotropic Strength of Sand." Journal of Geotechnical and Geoenvironmental Engineering, ASCE Vol. 134, No. 9, pp. 1311-1318.
28.Ishihara, K.(2013), Personal discussion.
29.Kim B. S.(2012), "Effect of Opening on the Shear Behavior of Granular Materials in Direct Shear Test." Journal of Civil Engineering, KSCE, Vol. 16, No. 7, pp. 1132-1142.
30.Lade, P. V., Liggio, C. D. and Yamamuro, J. A.(1998), "Effects of non-plastic fines on minimum and maximum void ratios of sand." ASTM Geotechnical Testing Journal Vol. 21, No. 4, pp. 336-347.
31.Lambe, T. W. and Whitman R. V.(1979), Soil Mechanics SI Version, John Wiley & Sons, New York, pp. 553.
32.Lambe, T. W. (1981), Soil Testing for Engineers, Wiley, pp. 88-97.
33.Leslie, D. D.(1963), "Large Scale Triaxial Tests on Gravelly Soils." Proceedings of the 2nd Panamerican Conference on Soil Mechanics and Foundation Engineering, Brazil, Vol. 1, pp. 181-202.
34.Lee, K. L., and Farhoomand, I. (1967), " Drained Strength Characteristics of Sand." Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM6, Nov., pp. 117-141.
35.Lee, K. L. and Seed, H. B. (1967), "Drained Strength Characteristics of Sands." Journal of the Soil Mechanics and Foundations Division, ASCE Vol. 93, No. SM6, pp. 117-141.
36.Lee, K. L., Seed, H. B., and Dunlop, P.(1967), "Effect of Moisture on the Strength of a Clean Sand. "Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM6, Nov., pp. 17-40.
37.Marsal, R. J.(1965), "Discussion of Shear Strength." Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, Vol. 3, pp. 310-316.
38.Thevanayagam, S.(1998), "Effect of fines and confining stress on undrained shear strength of silty sands." Journal of Geotechnical and Geoenvironmental Engineering Vol. 124, No. 6, pp. 479-491.
39.Yamamuro, J. A. and Lade, P. V.(1998), "Steady-state concepts and static liquefaction of silty sands." Journal of Geotechnical and Geoenvironmental Engineering Vol. 124, No. 9.
40.Yamamuro, J. A. and Lade, P. V.(1999), "Experiments and modeling of silty sands susceptible to static liquefaction." Mechanics of Cohesive-Frictional Materials Vol. 4, No. 6, pp. 545-564.
41.Yamamuro, J. A. and Covert, K. M.(2001), "Monotonic and cyclic liquefaction of very loose sands with high silt content." Journal of Geotechnical and Geoenvironmental Engineering Vol. 127, No. 4, pp. 314-324.
42.Yamamuro, J. A. and Wood, F. M.(2004), "Effect of depositional method on the undrained behavior and microstructure of sand with silt." Soil Dynamics and Earthquake Engineering Vol. 24, No. 9-10, pp. 751-760.
43.Yin, Z. Y., Zhao, J. and Hicher, P. Y.(2014), "A micromechanics-based model for sand-silt mixtures." International Journal of Solids and Structures Vol. 51, No. 6, pp. 1350-1363.