| 研究生: |
鄭緣祥 Cheng, Yuan-Hsiang |
|---|---|
| 論文名稱: |
技術分析能否加強GARCH模型預測外匯的波動性? Can Technical Trading Rules Help the GARCH Model Predict FX Volatility? |
| 指導教授: |
顏盟峯
Yen, Meng-Feng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融研究所碩士在職專班 Graduate Institute of Finance (on the job class) |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 17 |
| 中文關鍵詞: | 技術分析 、ㄧ般化自我迴歸異質變異數模型 、外匯波動度 |
| 外文關鍵詞: | Technical analysis, GARCH, Foreign exchange volatility |
| 相關次數: | 點閱:66 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的是在檢驗技術分析在外匯波動度的預測能力。本篇研究採用五大類技術指標:濾嘴法則(FR)、支撐與壓力(SR)、通道突破(CB)、移動平均線(MA)、動量(MOM)。將共計27條的技術交易規則應用到2種外匯匯率:澳幣(AUS)和日幣(JPY)。我們採用以27條的技術交易規則擴充後的一般化自我相關條件異質變異模型 (GARCH(1,1) model)為比較模型,藉由計算均方誤差(MSE)及平均絕對誤差(MAE)於樣本期間內探討是否比較模型對外匯波動度的預測力表現優於GARCH(1,1)基準模型。本文想探討是否加入技術分析指標能進一步提升GARCH(1,1)對外匯波動度的預測力,並討論在不同的幣別和不同的樣本期間中加入技術分析是否能有效地提升波動度模型對外匯波動度的預測能力。
This paper examines the predictive and profitable ability of technical analysis in the foreign exchange volatility. We apply five technical indicators (FR, MA, CB, SR and MOM) which total 27 technical trading rules to two different foreign exchange rates (AUD and JPY). We use the augmented GARCH(1,1) model with 27 technical trading rules as competing models and then exam whether any of these competing models can provide better predictability of volatility than the GARH(1,1) benchmark model based on the loss functions of MSE and MAE. This paper would like to discuss whether technical analysis indicators can improve the ability of the GARCH model to predict the foreign exchange volatility.
Andersen, T. G. and T. Bollerslev (1998) “Deutsche Mark-Dollar Volatility: Intraday Activity Patterns, Macroeconomic Announcements, and Longer run Dependencies,” Journal of Finance, 53(1), pp. 219-265.
Andersen, T.G. and S. Lange and T. Bollerslev (1999) “Forecasting Financial Market Volatility: Sample Frequency vis-à-vis Forecast Horizon,” Journal of Empirical Finance, 6(5), pp. 457-477.
Berger, D., A. Chaboud and E. Hjalmarsson (2009) “What Drives Volatility Persistence in the Foreign Exchange Market?” Journal of Financial Economics, 94(2), PP. 192-213.
Bollerslev, T. (2001). “Generalized Autoregressive Conditional Heteroskedasticity,” Journal of Econometrics, 100(1), pp. A307-A327.
Brock, W., B. Lebaron and J. Lakonishok (1992), “Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,” Journal of Finance, 47(5), pp. 1731-1764.
Clark, T. E. and M. W. McCracken (2009), “Improving Forecast Accuracy by Combining Recursive and Rolling Forecasts,” International Economic Review, 50(2), pp. 363-395.
Engle, R. F. (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United,” Econometrica, 50(4), pp. 987-1007.
Gehrig, T. and L. Menkhoff (2006), “Extended Evidence on the use of Technical Analysis in Foreign Exchange,” International Journal of Finance & Economics, 11(4), pp. 327-338.
Hansen, P. R. and A. Lunde (2005), “A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?” Journal of Applied Econometrics, 20(7), pp. 873-889.
Hsu, P. H., C. M. Kuan and Y. C. Hsu (2010), “Testing the Predictive Ability of Technical Analysis Using a new Stepwise Test without Data Snooping Bias,” Journal of Empirical Finance, 17(3), pp. 471-484.
Hsu, P. H., C. M. Kuan and M. F. Yen (2013), “A Generalized Stepwise Procedure with Improved Power for Multiple Inequalities Testing,” unpublished manuscript.
Irwin, S.H., C.R. Zulauf, M.E. Gerlow and J.N. Tinker (1997), Advances in Investment Analysis and Portfolio Management Volume 4: A performance comparison of a technical trading system with ARIMA models for soybean complex prices(1st ed.), Greenwich: JAI Press.
Leuthold, R. M. (1972), “Random Walk and Price Trends: Live Cattle Futures Market,” Journal of Finance, 27(4), pp. 879-889.
Lukac, L. P., B. W. Brorsen and S. H. Irwin (1988), “A Test of Futures Market Disequilibrium Using 12 Different Technical Trading Systems,” Applied Economics, 20(5), pp. 623-639.
Marshall, B. R., J. M. Cahan and R. H. Cahan (2008), “Does intraday technical analysis in the US equity market have value?” Journal of Empirical Finance, 15(2), pp. 199-210.
Neely, C. J., D. E. Rapach, J. Tu and G. Zhou (2012), “Forecasting the Equity Risk Premium: The Role of Technical Indicators,” unpublished manuscript.
Neely, C. J., J. M. Ulrich and P. A. Weller (2009), “The Adaptive Markets Hypothesis: Evidence from the Foreign Exchange Market,” Journal of Financial and Quantitative Analysis, 44(2), pp. 467-488.
Neely, C. J. and P. A. Weller (2011), “Technical Analysis in the Foreign Exchange Market,” working paper.
Okunev, J. and D. White (2003), “Do Momentum-based Strategies Still Work in Foreign Currency Markets?” Journal of Financial and Quantitative Analysis, 38(2), pp. 425-447.
Park, C. H. and S. H. Irwin (2010), “A Reality Check on Technical Trading Rule Profits in the U.S. Futures Markets, “Journal of Futures Markets, 30(7), pp. 633-659.
Pesaran, M. H. and A. Timmermann (2007), “Selection of estimation window in the presence of breaks,” Journal of Econometrics, 137(1), pp. 134-161.
Roberts, M. C. (2005), “Technical Analysis and Genetic Programming: Constructing and Testing a Commodity Portfolio,” Journal of Futures Markets, 25(7), pp. 643-660.
Romano, J. P., A. M. Shaikh and M. Wolf (2008), “Formalized Data Snooping Based on Generalized Error Rates,” Econometric Theory, 24(2), pp. 404-447.
Stevenson, R. A. and R. M. Bear (1970), “Commodity Futures: Trends or Random Walks,” Journal of Finance, 25(1), pp. 65-81.
Sullivan, R., A. Timmermann and H. White (1999), “"Data-snooping, Technical Trading Rule Performance, and the Bootstrap,” Journal of Finance, 54(5), pp. 1647-1691.
Sweeney, R. J. (1986), “Beating the Foreign Exchange Market,” Journal of Finance, 41(1), pp. 163-182.
Silber, W. L., (1994), “Technical Trading: When it Works and When it Doesn’t,” Journal of Derivatives, 1(3), pp. 39-44.
校內:2019-09-09公開