簡易檢索 / 詳目顯示

研究生: 陳翰馴
Chen, Han-Syun
論文名稱: 高溫厭氧纖維素分解菌之分離鑑定及水解纖維素特性研究
Isolation, Identification and Characterization of a Thermophilic Anaerobe for Cellulose Hydrolysis
指導教授: 吳哲宏
Wu, Jer-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 81
中文關鍵詞: 纖維素水解Clostridium生質能還原醣
外文關鍵詞: Cellulose hydrolysis, Clostridium, Bioenergy, Reducing Sugar
相關次數: 點閱:91下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於清潔再生能源議題發燒,以木質纖維素類的生物量做為料源生產能源已成為一門顯學。不管是早期的同步醣化及共發酵系統(SSCF)或近期的整合型生化反應系統(CBP),都是為了解決水解酵素生產,纖維素水解及發酵產能的問題,以提高整體纖維素生產能源的效率。本研究以Clostridium屬做為研究對象,找出可以在高溫厭氧條件下進行纖維素水解或醣解產氫的菌株,並研究其生理生化特性。
    因此,選用了牛糞系統做為來源,成功的優勢化具有水解濾紙的Clostridium屬菌群,而其菌群結構主要分於Clostridial cluster I,III、XII,XVIII,當中只有Cluster III的Clostridium clariflavum為纖維素水解菌株。所以,針對此優勢化樣本中的纖維素水解菌株進行分離與分子生物鑑定,並命名為Clostridium clariflavum H1。藉由電子顯微鏡觀察此菌株H1會附著濾紙上,當在水解纖維素時會產生黃色物質(YAS),且環境惡劣時會有內孢子的保護構造產生的特點。此外,菌株H1在55~60℃及初始pH=7.5~8為最佳的生長溫度及pH,而當以纖維雙糖培養觀察其生長曲線時,需要16小時才能適應環境,到第44小時才進入高原期。而在不同碳源廣度測試方面,菌株H1可以利用纖維素類及木聚醣的碳源產生氫氣及乙醇,並有還原醣累積的現象,但直接利用寡醣類的纖維雙糖,蔗糖,及單醣類的葡萄糖,木糖發酵產生氫氣及乙醇的效果不佳。相較於另一株從蔗渣堆肥中分離出的高溫厭氧纖維素水解菌株Thermoanaerobacterium thermosaccharolyticum RCB,其特性卻對木聚醣,寡醣類及單醣類有顯著的利用產生氫氣、乙醇與丁醇,反而對纖維素類的碳源無法產生還原醣累積,及有明顯的產氫氣及醇類的表現。於是進行水解酵素活性測試,其結果顯示菌株H1對於半纖維素類的木聚醣只要一天的時間就以還原醣的濃度增加1.70 g/L的速率達到飽和期,發現其自由型的木聚醣水解酵素活性高達7.45±2.98 U,而固定型的木聚醣水解酵素活型則達2.03±0.30 U/mg,但至於菌株H1針對纖維素類外切型及內切型酵素活性表現不明顯。最後,將菌株H1應用於鹼處理過後蔗渣,稻稈及狼尾草的天然纖維素,發現以水解狼尾草的產生還原醣的濃度最高,以5g/L的初始濃度培養七天後,其還原醣濃度可累積到1.32±0.3 g/L,此時測其水解酵素活性發現也是以木聚醣的水解酵素為優勢約1.91~3.01 U/mg之間,至於外切型及內型的纖維素水解酵素表現依舊不明顯。
    本研究已成功地取得扮演纖維素水解酵素生產已進行纖維素水解的菌株及醣解發酵菌株,並了解其生理生化特性資料。這些資料可以供後續實際反應槽操作或其他相關生質能研究的參考。

    In the recent years, clear and renewable energy has become an emerging topic to ensure the environment sustainability in the future. That effectively converts lignocellulosic biomass to the energy and reusable solvents already drew much attention, while the biological processes such as the simultaneous saccharification and co-fermentation (SSCF) or the recent consolidated bioprocessing (CBP) were developed to demonstrate the feasibility. Whichever the process was actually required the cellulase production, hydrolysis and fermentation mediated by microbial populations to increase the efficiency of energy recovering. In this research, it was focused on the selected members in the Genus Clostridium with a goal obtain the cellulolytic and fermentative anaerobes at the thermophilic anaerobic conditions, and then preliminary characterization on biochemical and physiological properties of these microorganisms in cellulose hydrolysis were studied accordingly.
    To achieve so, the cattle manure was selected as the microbial source, and succeeded in enriching the key microbial populations capable of hydrolyzing filter paper. Based on microbial community analysis, it was found that the various Clostridium groups were present in the enrichment, including Clostridial cluster I, III, XII, and XVIII. Of those, the strain H1 close to Clostridium clariflavum within the cluster III was successfully isolated in the pure culture and then further studied for the cellulolytic capability. The scanning electron microscope observation showed that the strain H1 could attach on the fibers of the filter paper during hydrolyzing and form the terminal endospores in the aged medium environment. In particular, the strain H1 seemed to produce yellow affinity substance (YAS) to enhance the cellulose hydrolysis. Besides, the strain H1 had the optimal growth temperature between 55~60℃ and the optimal initial pH between 7.5~8. Using cellobiose as the growth substrate, the strain H1 needed a lag time of 16 hrs to adapt the environment and then reached the plateau phase in 44 hrs in the growth curve. In addition to cellobiose, the strain H1 could favorably utilize cellulose and xylan to produce hydrogen and ethanol with accumulation of reducing sugar. For example, when the initial concentration of α-cellulose at 5 g / L, it was found the highest concentration of reducing sugar accumulated up to 2.23 ± 0.3 g / L. This might be because the strain H1 had a slower ability on fermenting oligosaccharides like cellobiose, sucrose and monosaccharides like glucose, xylose. However, as compared with the strain Thermoanaerobacterium thermosaccharolyticum RCB isolated from bagasse compost previously in our laboratory, it had a good ability utilizing xylan, oligosaccharides and monosaccharides to produce hydrogen, ethanol and butanol but not good in utilizing cellulose substrates.
    Further, the result of the cellulase activity analysis showed that the strain H1 reached the stationary level with the increasing rate of reducing sugar concentration 1.70 g/L/day. It was discovered that the highest activity of cell-free and cell-bound xylanase was 7.45 ± 2.98 U/mg and 2.03 ± 0.30 U/mg, respectively, whereas the expression of exoglucanase and endoglucanase enzyme activities was not prominent. Finally, the strain H1 was applied to hydrolyze the natural cellulose materials like bagasse, rice straw, and napier grass after alkali treatment. The results showed that when the initial concentration of carbon at 5 g / L was hydrolyzed by the strain H1, the highest concentration of reducing sugar could accumulate up to 1.32 ± 0.3 g /L in the culture with xylanase activity of 1.91 ~ 3.01U/mg. The overall result from this study suggested that the strain H1 has a great potential in converting the cellulose feedstock to sugars, which can be further converted to bioenergy using the hydrogen-producing or alcohol-producing specialists such as T. thermosaccharolyticum RCB.
    From this research, we succeeded in getting the cellulolytic bacteria which produced the cellulase and the fermentative bacteria, and understand the characterization. It could provide this datum for the actual reactor operation or the reference of other biomass energy.

    摘要 I Abstract III 致謝 VI 目錄 VII 圖目錄 X 表目錄 XII 第一章 前言 1 1.1研究背景 1 1.2 研究目的 2 1.3 研究架構 3 第二章 文獻回顧 4 2.1 生質能源與木質纖維素 4 2.1.1 生質能源概略 4 2.1.2木質纖維素介紹 6 2.1.3纖維素水解酶介紹 8 2.1.4半纖維素水解酶介紹 9 2.2 纖維素水解菌介紹 10 2.2.1纖維素分解菌的總類 10 2.2.2梭狀桿菌屬(Clostridium)的纖維素水解菌群及其環境分佈 11 2.2.3梭狀桿菌屬(Clostridium)的生理生化特性介紹 13 2.2.4梭狀桿菌的纖維素水解酶複合體(Cellulosome)介紹 14 2.2.5高溫梭狀厭氧纖維素水解桿菌的優點與應用 17 2. 3分子生物技術分析纖維素水解菌的多樣性 18 第三章材料與方法 23 3.1 樣本來源及馴養 23 3.1.1 樣本來源及馴養 23 3.2 菌群結構分析 24 3.2.1 微生物DNA的萃取 (冷凍解凍法) 24 3.2.2聚合酶連鎖反應(Polymerase Chain Reaction,PCR) 25 3.2.3 16S rRNA基因選殖 25 3.2.4 限制片段長度多型性分析(Restriction Fragment Length Polymorphism) 26 3.2.5 DNA序列分析 26 3.2.6. 親緣演化分析 26 3.3 纖維素水解菌分離 27 3.3.1 高溫厭氧纖維素分解菌的分離 27 3.4纖維素水解菌鑑定 27 3.4.1 微生物DNA的萃取 (Miller法) 27 3.4.2 螢光原位雜交法 28 3.4.3 掃描式電子顯微鏡(SEM)觀察 30 3.5 純菌的生理生化特性 30 3.5.1 細菌生長 30 3.5.2 氫氣的分析 31 3.5.3 揮發酸及醇類分析 31 3.5.4 還原醣的分析 31 3.5.5 總醣的分析 32 3.5.6 酵素活性測試 32 3.5.7 蛋白質濃度定量 33 3.6 天然纖維素料源前處理 33 3.6.1 以鹼性化學物質前處理天然纖維素 33 第四章 結果 34 4.1優渥化纖維素水解菌群結構分析 34 4.1.1優渥牛糞系統中的纖維素水解菌群觀察 34 4.1.2 優渥牛糞系統中的纖維素水解菌群結構分析 35 4.2 纖維素水解菌的分離 39 4.3 纖維素水解菌的鑑定 41 4.3.1 純度鑑定 41 4.3.2 親緣鑑定 42 4.3.3 型態鑑定 43 4.4 纖維素水解菌的生理生化特性分析 45 4.4.1以纖維雙糖測試溫度,初始pH之影響與生長曲線 45 4.4.2 纖維素水解菌株的碳源利用測試 50 4.3.3 Clostridium clariflavum H1的纖維素水解酵素及木聚醣水解酵素活性測試 56 4.3.4 Clostridium clariflavum H1應用於天然纖維素水解的效率 59 第五章 綜合討論 61 5.1綜合討論 61 第六章 結論與建議 64 6.1 結論 64 6.2 建議 65 第七章 參考文獻 67 附錄 76 自述 81

    1.Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403-410.
    2.Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995). Phylogenetic identification and in-situ detection of individual microbial-cells without cultivation. Microbiological Reviews 59, 143-169.
    3.Arantes, V., and Saddler, J.N. (2010). Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis. Biotechnol Biofuels 3.
    4.Bayer, E.A., Lamed, R., White, B.A., and Flint, H.J. (2008). From cellulosomes to cellulosomics. Chemical Record 8, 364-377.
    5.Bhandari, A.P., Sukanya, D.H., and Ramesh, C.R. (2006). Application of isozyme data in fingerprinting napier grass (Pennisetum purpureum Schum.) for germplasm management. Genetic Resources and Crop Evolution 53, 253-264.
    6.Burrell, P.C., O'Sullivan, C., Song, H., Clarke, W.P., and Blackall, L.L. (2004). Identification, detection, and spatial resolution of Clostridium populations responsible for cellulose degradation in a methanogenic landfill leachate bioreactor. Applied and Environmental Microbiology 70, 2414-2419.
    7.Collins, M.D., Lawson, P.A., Willems, A., Cordoba, J.J., Fernandezgarayzabal, J., Garcia, P., Cai, J., Hippe, H., and Farrow, J.A.E. (1994). The phylogeny of the Genus Clostridium - proposal of 5 new Genera and 11 new Species combinations. International Journal of Systematic Bacteriology 44, 812-826.
    8.Deflaun, M.F., Fredrickson, J.K., Dong, H., Pfiffner, S.M., Onstott, T.C., Balkwill, D.L., Streger, S.H., Stackebrandt, E., Knoessen, S., and van Heerden, E. (2007). Isolation and characterization of a Geobacillus thermoleovorans strain from an ultra-deep South African gold mine. Systematic and Applied Microbiology 30, 152-164.
    9.Demain, A.L., Newcomb, M., and Wu, J.H.D. (2005). Cellulase, clostridia, and ethanol. Microbiology and Molecular Biology Reviews 69, 124-+.
    10.Desvaux, M. (2005). Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiology Reviews 29, 741-764.
    11.Ding, S.Y., Xu, Q., Crowley, M., Zeng, Y., Nimlos, M., Lamed, R., Bayer, E.A., and Himmel, M.E. (2008). A biophysical perspective on the cellulosome: new opportunities for biomass conversion. Current Opinion in Biotechnology 19, 218-227.
    12.Doi, R.H., and Tamaru, Y. (2001). The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Chemical Record 1, 24-32.
    13.Drent, W.J., Lahpor, G.A., Wiegant, W.M., and Gottschal, J.C. (1991). Fermentation of inulin by Clostridium thermosuccinogenes sp. nov., a thermophilic anaerobic bacterium isolated from various habitats. Applied and Environmental Microbiology 57, 455-462.
    14.Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R., and White, B.A. (2008). Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews. Microbiology 6, 121-131.
    15.Freier, D., Mothershed, C.P., and Wiegel, J. (1988). Characterization of Clostridium thermocellum JW20. Applied and Environmental Microbiology 54, 204-211.
    16.Geng, A., He, Y.L., Qian, C.L., Yan, X., and Zhou, Z.H. (2010). Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresource Technology 101, 4029-4033.
    17.Han, S.O., Yukawa, H., Inui, M., and Doi, R.H. (2005). Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology 151, 1491-1497.
    18.He, Y.L., Ding, Y.F., and Long, Y.Q. (1991). Two cellulolytic Clostridium species: Clostridium cellulosi sp. nov. and Clostridium cellulofermentans sp. nov. International Journal of Systematic Bacteriology 41, 306-309.
    19.Hethener, P., Brauman, A., and Garcia, J.L. (1992). Clostridium termitidis sp-nov, a cellulolytic bacterium from the gut of the wood-feeding termite, Nasutitermes lujae. Systematic and Applied Microbiology 15, 52-58.
    20.Hoster, F., Daniel, R., and Gottschalk, G. (2001). Isolation of a new Thermoanaerobacterium thermosaccharolyticum strain (FH1) producing a thermostable dextranase. The Journal of General and Applied Microbiology 47, 187-192.
    21.Hungate, R.E. (1944). Studies on cellulose fermentation: I. the culture and physiology of an anaerobic cellulose-digesting bacterium. Journal of Bacteriology 48, 499-513.
    22.Islam, R., Cicek, N., Sparling, R., and Levin, D. (2006). Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Applied Microbiology and Biotechnology 72, 576-583.
    23.Islam, R., Cicek, N., Sparling, R., and Levin, D. (2009). Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Applied Microbiology and Biotechnology 82, 141-148.
    24.Kane, M.D., Poulsen, L.K., and Stahl, D.A. (1993). Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Applied and Environmental Microbiology 59, 682-686.
    25.Klinke, H.B., Thomsen, A.B., and Ahring, B.K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology 66, 10-26.
    26.Kobayashi, Y., Shinkai, T., and Koike, S. (2008). Ecological and physiological characterization shows that Fibrobacter succinogenes is important in rumen fiber digestion - Review. Folia Microbiol 53, 195-200.
    27.Kumar, R., Singh, S., and Singh, O.V. (2008). Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Journal of Industrial Microbiology & Biotechnology 35, 377-391.
    28.Lamed, R., Setter, E., and Bayer, E.A. (1983). Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. Journal of Bacteriology 156, 828-836.
    29.Lee, Y.E., Jain, M.K., Lee, C.Y., Lowe, S.E., and Zeikus, J.G. (1993). Taxonomic distinction of saccharolytic thermophilic anaerobes - description of Thermoanaerobacterium xylanolyticum gen-nov, sp-nov, and Thermoanaerobacterium saccharolyticum gen-nov, sp-nov - Reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100
    -69 as Thermoanaerobacter Brockii Comb-Nov, Thermoanaerobacterium thermosulfurigenes comb-nov, and Thermoanaerobacter thermohydrosulfuricuscomb-nov, respectively - and transfer of Clostridium thermohydrosulfuricum 39e to Thermoanaerobacter ethanolicus. International Journal of Systematic Bacteriology 43, 41-51.
    30.Lee, Z.K., Li, S.L., Lin, J.S., Wang, Y.H., Kuo, P.C., and Cheng, S.S. (2008). Effect of pH in fermentation of vegetable kitchen wastes on hydrogen production under a thermophilic condition. International Journal of Hydrogen Energy 33, 5234-5241.
    31.Lee, R. L., Charles, E. W., Tillman, U. G. (1999). Biocommodity engineering. Biotechnol. Prog. 15:777-793.
    32.Levin, D.B., Carere, C.R., Cicek, N., and Sparling, R. (2009). Challenges for biohydrogen production via direct lignocellulose fermentation. International Journal of Hydrogen Energy 34, 7390-7403.
    33.Liu, W.T., Marsh, T.L., Cheng, H., and Forney, L.J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology 63, 4516-4522.
    34.Madden, R.H. (1983). Isolation and characterization of Clostridium stercorarium sp-nov, cellulolytic thermophile. International Journal of Systematic Bacteriology 33, 837-840.
    35.Madden, R.H., Bryder, M.J., and Poole, N.J. (1982). Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium
    papyrosolvens sp-nov. International Journal of Systematic Bacteriology 32, 87-91.
    36.Magnusson, L., Cicek, N., Sparling, R., and Levin, D. (2009). Continuous hydrogen production during fermentation of alpha-Cellulose by the thermophillic bacterium Clostridium thermocellum. Biotechnology and Bioengineering 102, 759-766.
    37.Mc, B.R. (1954). The characteristics of Clostridium thermocellum. Journal of Bacteriology 67, 505-506.
    38.Miller, D.N., Bryant, J.E., Madsen, E.L., and Ghiorse, W.C. (1999). Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Applied and Environmental Microbiology 65, 4715-4724.
    39.Monserrate, E., Leschine, S.B., and Canale-Parola, E. (2001). Clostridium hungatei sp. nov., a mesophilic, N2-fixing cellulolytic bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology 51, 123-132.
    40.Muhammad Mohsin Javed, T.S.K.a.I.-u.H. (2007). Sugar cane bagasse pretreatment: an attempt toenhance the production potential of cellulases by Humicola insolens TAS-13. Eletronic Journal of Environmental, Agricultural and Food Chemistry.
    41.Ng, T.K., Weimer, T.K., and Zeikus, J.G. (1977). Cellulolytic and physiological properties of Clostridium thermocellum. Archives of Microbiology 114, 1-7.
    42.Niehaus, F., Bertoldo, C., Kahler, M., and Antranikian, G. (1999). Extremophiles as a source of novel enzymes for industrial application. Applied Microbiology and Biotechnology 51, 711-729.
    43.Nitisinprasert, S., and Temmes, A. (1991). The characteristics of a new non-spore-forming cellulolytic mesophilic anaerobe strain CM126 isolated from municipal sewage-sludge. Journal of Applied Bacteriology 71, 154-161.
    44.O'Sullivan, C., Burrell, P.C., Clarke, W.P., and Blackall, L.L. (2007). A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic environments using fluorescence in situ hybridization. Journal of Applied Microbiology 103, 1332-1343.
    45.Thong, S., Prasertsan, P., Karakashev, D., and Angelidaki, I. (2008). Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2.International Journal of Hydrogen Energy 33, 1204-1214.
    46.Petitdemange, E., Caillet, F., Giallo, J., and Gaudin, C. (1984). Clostridium cellulolyticum sp-nov, a cellulolytic, mesophilic species from decayed grass. International Journal of Systematic Bacteriology 34, 155-159.
    47.Ramachandran, U., Wrana, N., Cicek, N., Sparling, R., and Levin, D.B. (2008). Hydrogen production and end-product synthesis patterns by Clostridium termitidis strain CT1112 in batch fermentation cultures with cellobiose or alpha-cellulose. International Journal of Hydrogen Energy 33, 7006-7012.
    48.Raman, B., Pan, C., Hurst, G.B., Rodriguez, M., McKeown, C.K., Lankford, P.K., Samatova, N.F., and Mielenz, J.R. (2009). Impact of pretreated switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: A quantitative proteomic analysis. Plos One 4.
    49.Ren, N.Q., Cao, G.L., Wang, A.J., Lee, D.J., Guo, W.Q., and Zhu, Y.H. (2008). Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy 33, 6124-6132.
    50.Rubin, E.M. (2008). Genomics of cellulosic biofuels. Nature 454, 841-845.
    51.Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425.
    52.Saunier, K., Rouge, C., Lay, C., Rigottier-Gois, L., and Dore, J. (2005). Enumeration of bacteria from the Clostridium leptum subgroup in human faecal microbiota using Clep1156 16S rRNA probe in combination with helper and competitor oligonucleotides. Systematic and Applied Microbiology 28, 454-464.
    53.Scalabrini, P., Rossi, M., Spettoli, P., and Matteuzzi, D. (1998). Characterization of bifidobacterium strains for use in soymilk fermentation. International Journal of Food Microbiology 39, 213-219.
    54.Shiratori, H., Ikeno, H., Ayame, S., Kataoka, N., Miya, A., Hosono, K., Beppu, T., and Ueda, K. (2006). Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor. Applied and Environmental Microbiology 72, 3702-3709.
    55.Shiratori, H., Sasaya, K., Ohiwa, H., Ikeno, H., Ayame, S., Kataoka, N., Miya, A., Beppu, T., and Ueda, K. (2009). Clostridium clariflavum sp nov and Clostridium caenicola sp nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge. International Journal of Systematic and Evolutionary Microbiology 59, 1764-1770.
    56.Skinner, F.A. (1960). The isolation of anaerobic cellulose-decomposing bacteria from soil. Journal of General Microbiology 22, 539-554.
    57.Sleat, R., Mah, R.A., and Robinson, R. (1984). Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium
    cellulovorans sp-nov. Applied and Environmental Microbiology 48, 88-93.
    58.Slobodkin, A.I., Tourova, T.P., Kostrikina, N.A., Lysenko, A.M., German, K.E., Bonch-Osmolovskaya, E.A., and Birkeland, N.K. (2006). Tepidimicrobium ferriphilum gen. nov., sp. nov., a novel moderately thermophilic, Fe(III)-reducing bacterium of the order Clostridiales. International Journal of Systematic and Evolutionary Microbiology 56, 369-372.
    59.Soh, A.L.A., Ralambotiana, H., Ollivier, B., Prensier, G., Tine, E., and Garcia, J.L. (1991). Clostridium thermopalmarium sp-nov, a moderately thermophilic butyrate-producing bacterium isolated from palm wine in Senegal. Systematic and Applied Microbiology 14, 135-139.
    60.Subramaniyan, S., and Prema, P. (2000). Cellulase-free xylanases from
    Bacillus and other microorganisms. FEMS Microbiol Letters 183, 1-7.
    61.Sukhumavasi, J., Ohmiya, K., Shimizu, S., and Ueno, K. (1988). Clostridium josui sp-nov, a cellulolytic, moderate thermophilic species from Thai compost. International Journal of Systematic Bacteriology 38, 179-182.
    62.Taherzadeh, M.J., and Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences 9, 1621-1651.
    63.Ulbrik, T.Y.L. (1991). Cellulolytic fermentation by Clostidium thermocellum. The Degree Master of Science in Chemical Engineering. Georgia Institute of Technology.
    64.Vieille, C., and Zeikus, G.J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews 65, 1-+.
    65.Vieira, W.B., Moreira, L., Neto, A.M., and Ferreira, E.X. (2007). Production and characterization of an enzyme complex from a new strain of Clostridium thermocellum with emphasis on its xylanase activity. Braz J Microbiol 38, 237-242.
    66.Weimer, P.J., and Zeikus, J.G. (1977). Fermentation of cellulose and cellobiose by Clostridium thermocellum in the absence of Methanobacterium thermoautotrophicum. Applied and Environmental Microbiology 33, 289-297.
    67.Woese, C.R. (1987). Bacterial evolution. Microbiol Review, (2): 221-271.
    68.Xu, Q., Singh, A., and Himmel, M.E. (2009). Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Current Opinion in Biotechnology 20, 364-371.
    69.Yang, J.C., Chynoweth, D.P., Williams, D.S., and Li, A. (1990). Clostridium aldrichii sp-nov, a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester. International Journal of Systematic Bacteriology 40, 268-272.
    70.尤智立。(2003)。嗜高溫纖維素分解酵素的探討。國立中山大學生物科學研究所。
    71.成游貴。(2004)。畜產生物品種資源 狼尾草,行政院農業委員會畜產試驗所專輯,第89號,66-67頁。
    72.成游貴。(2006)。狼尾草育種與多元化作用。行政院農業委員會畜產試驗所飼料作物組。
    73.吳季芳。(2006)。以澱粉為碳源基質進行生物產氫。國立成功大學化學工程系碩士論文。
    74.郁儀豪。(2003)。蔗渣堆肥中嗜高溫菌之分離與應用。國立臺灣大學環境工程學研究所。
    75.張馨月。(2008)。應用階層寡核苷酸引子延伸技術分析纖維素分解過程中微生物社會動態變化。國立成功大學生命科學研究所碩士論文。
    76.陳偉宏。(2005)。家族54阿拉伯呋喃糖苷酵素之反應機制探討。國立交通大學應用化學研究所碩士論文。
    77.傅子寧。(2009)。牛糞肥中一株嗜熱厭氧纖維水解菌Clostridium sp. TCW1之分離鑑定及纖維素醣化研究。私立東海大學環境科學與工程研究所。
    78.葉財記。(2003)。谷關溫泉中二嗜熱厭氧木聚醣降解螺旋體菌株之分離與鑑定。私立東海大學環境科學與工程研究所。
    79.葉惠青。(2010)。能源產業技術白皮書。經濟部能源局。
    80.簡青紅。(1993)。利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構。國立成功大學生命科學研究所碩士論文。

    下載圖示 校內:2016-02-11公開
    校外:2016-02-11公開
    QR CODE