| 研究生: |
林智毅 Lin, Chih-Yi |
|---|---|
| 論文名稱: |
氧化亞銅的性質研究與鈣鈦礦太陽能電池之應用 Research of copper (I) oxide and application of perovskite solar cell |
| 指導教授: |
黃榮俊
Huang, J.C.A |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 氧化亞銅 、鈣鈦礦 、大面積太陽能電池 、透明導電膜 |
| 外文關鍵詞: | Cu2O, Perovskite, Large-scale solar cell, TCO |
| 相關次數: | 點閱:72 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用離子束濺鍍 (Ion Beam Sputter, IBS)成長氧化亞銅薄膜,氧化亞銅以銅靶通以氬氣混和氧氣濺鍍而成,並進行氧化亞銅的特性研究,包含了:XRD、SEM、PL、XPS等等。氧化亞銅為一種P型材料,並具有良好的電學性質,所以我們將氧化亞銅應用在鈣鈦礦太陽能電池上充當電洞傳輸材料 (Hole Transport Material, HTM),而由效率量測知道結構如:FTO/TiO2/Perovskite/Spiro-OMeTAD/Cu2O/Ag比起一般標準元件: FTO/TiO2/Perovskite/Spiro-OMeTAD/Ag在短路電流密度(Shortcut Current Density, Jsc)上提升約7mA/cm^2、能量轉換效率 (Power Conversion Efficiency, PCE)上約有2.5%的提升。
除此之外利用氧化亞銅製作大面積的太陽能電池元件及製作P型的透明導電膜也是本實驗探討的重點。而本實驗中大面積的電池元件工作面積為2cm^2,效率為8.2%,利用氧化亞銅做為P型的透明導電膜的雙面透光元件,FTO面入光效率為12.04%、氧化亞銅面入光效率為4.94%。
In this research, we manufactured Cu2O films by copper target sputtered with Argon mixed Oxygen by Ion Beam Sputter (IBS) system. We analyzed the characteristics of Cu2O by XRD, SEM, PL, XPS…etc. Cu2O is a P-type material, and process a well electrical properties. Base on these properties, we applied Cu2O as a hole transport material to perovskite solar cell. After measuring the power conversion efficiency, the shortcut current density and power conversion efficiency enhanced by approximately 7mA/cm^2 and 2.5% compared with the structure (FTO/TiO2/Perovskite/Spiro-OMeTAD/Cu2O/Ag) and standard structure (FTO/TiO2/Perovskite-/Spiro-OMeTAD/Ag).
In addition, we applied Cu2O to manufacture the large-scale devices and P-type Transparent Conducting Oxide (TCO). In this research, the effective area of large-scale device is 2cm^2 and the efficiency is 8.2%. Using Cu2O as p-type TCO to manufacture bifacial device, the light enter the surface of FTO and Cu2O has efficiency 12.04% and 4.94%.
1. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. (2009). Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051.
2. Im, J. H., Lee, C. R., Lee, J. W., Park, S. W., & Park, N. G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088-4093.
3. http://www.nrel.gov/ncpv/images/efficiency_chart.jpgClaeys, C., & Simoen, E. (Eds.). (2011). Germanium-based technologies: from materials to devices. Elsevier.
4. F. Hao, C. C. Stoumpos, R. P. H. Chang, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 8094.
5. Bai, S., Wu, Z., Wu, X., Jin, Y., Zhao, N., Chen, Z., ... & Liu, R. (2014). High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Research,7(12), 1749-1758.
6. J.-H. Im, H.-S. Kim, N.-G. Park, APL Mater. 2014, 2, 081510.
7. Shen, P. S., Chen, J. S., Chiang, Y. H., Li, M. H., Guo, T. F., & Chen, P. (2016). Low‐Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Large‐Area Module. Advanced Materials Interfaces, 3(8).
8. Cui, X. P., Jiang, K. J., Huang, J. H., Zhou, X. Q., Su, M. J., Li, S. G., ... & Song, Y. L. (2015). Electrodeposition of PbO and its in situ conversion to CH 3 NH 3 PbI 3 for mesoscopic perovskite solar cells. Chemical Communications,51(8), 1457-1460.
9. Christians, J. A., Fung, R. C., & Kamat, P. V. (2013). An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society,136(2), 758-764.
10. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, Sci. Rep. 2012, 2, 591.
11. H.-S. Kim, J.-W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel, N.-G. Park,Nano Lett. 2013, 13, 2412.
12. J. Burschka, N. Pellet, S.-J. Moon,Nature 2013, 499, 316.
13. D. Bi, S.-J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, RSC Adv.2013, 3, 18762.
14. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nanotechnol. 2014, DOI:10.1038/NNANO.2014.181.
15. D.-Y. Son, J.-H. Im, H.-S. Kim, N.-G. Park, J. Phys. Chem. C 2014, 118,16567.
16. K.-C. Wang, J.-Y. Jeng, P.-S. Shen,Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo, T.-C. Wen,Sci. Rep. 2014, 4, 4756.
17. Zuo, C., & Ding, L. (2015). Solution‐Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. Small, 11(41), 5528-5532.
18. Yu, W., Li, F., Wang, H., Alarousu, E., Chen, Y., Lin, B., ... & Wang, X. (2016). Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 8(11), 6173-6179.
19. Hossain, M. I., Alharbi, F. H., & Tabet, N. (2015). Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Solar Energy, 120, 370-380.
20. Chikazumi, S. and S.H. Charap, Physics and Magnetism. 1972.
21. http://cmnst.ncku.edu.tw/bin/home.php 成功大學微奈米中心儀器使用手冊
22. http://www.oxford-instruments.com/industries-and-applications/research/optical-spectroscopy/photoluminescence
23. http://www.ccut.edu.tw/teachers/wentse/downloads/1031009-1.pdf
24. http://efd.nsrrc.org.tw/EFD.php?num=246
25. http://www.zolix.com.cn/solucon_393_963.html
26. http://srdata.nist.gov/xps/elm_Spectra_query.aspx?Elm1=Cu&LD1=3s&Elm2=&LD2=&Elm3=&LD3=&Elm4=&LD4=&sType=PE