| 研究生: |
廖祥裕 Liao, Siang-Yu |
|---|---|
| 論文名稱: |
幾丁聚醣做為不同細胞株DNA輸送載體之評估 Chitosan as Plasmid DNA Delivery Carrier to Various Cells |
| 指導教授: |
蔡瑞真
Tsai, Jui-Chen 呂政展 Lu, Cheng-Chan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學研究所 Institute of Clinical Pharmacy |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 幾丁聚醣 、基因療法 、轉染 |
| 外文關鍵詞: | gene therapy, chitosan, transfection |
| 相關次數: | 點閱:43 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基因療法(Gene therapy)是將帶有治療效果的一段基因利用細胞轉染(transfection)的方式送入特定的標的細胞或器官中取代發生病變或缺失的基因並促使其表現以達到治療目的的方法。但裸露且本身帶負電的基因易受核酸酶的分解及細胞膜表面的負電性所排斥,無法有效地進入細胞中達到應有的治療效果。因此,便需要載體(Vector)的保護及幫助,以增加細胞轉染的效率(transfection efficiency)。病毒性載體(viral vector)雖然有不錯的細胞轉染效果,但容易引起不良反應,甚而致死。有鑑於此,發展非病毒性載體(non-viral vector)便成了許多研究者的目標。最近的研究指出,幾丁聚醣(chitosan)具有成為有效的非病毒性載體的發展潛力。
幾丁聚醣是幾丁質經由去乙醯化(deacetylation)而得,具有相當良好的生物相容性及生物可分解性,且幾乎無細胞毒性。此外,幾丁聚醣為帶有正電的聚合物,能夠和帶負電的DNA以一定的比例藉由電性作用而緊密結合成為帶正電的複合物,保護去氧核醣核酸不受核酸酶的分解,並因複合物帶有正電易於和帶負電的細胞膜表面結合,使基因能順利進入細胞中,而有效促進細胞轉染的效率。
文獻指出幾丁聚醣之轉染效率隨著細胞株種類、幾丁聚醣分子量大小、去乙醯化程度(deacetylation)、細胞培養環境而有所不同。為進一步研究,本研究選擇基底細胞瘤(Basal cell carcinoma,BCC),株化角質細胞(Human keratinocyte,HaCaT),肝癌細胞(human hepatoma cells, Huh7)及胃癌細胞(human gastric cells,AGS),並利用reporter gene, pCMV-β,探討不同分子量的幾丁聚醣water soluble chitosan、chitosan 100、chitosan 500,及low molecular weight chitosan在這四株細胞中細胞轉染的效果,並探討不同的轉染條件對幾丁聚醣在轉染效果上的影響以及幾丁聚醣之細胞毒性。同時亦利用pEGFP-C1和幾丁聚醣形成複合物進行轉染,觀察蛋白質表現之分布情形。
研究結果顯示,除了water soluble chitosan外,其餘三種chitosan均能夠和質體形成複合物。在轉染試驗中,chitosan 100在BCC細胞株之轉染效率最高,HaCaT,及AGS次之,Huh7則最低。另外,轉染效率在皮膚細胞株(BCC、HaCaT)較其他細胞株來的高。另一方面,轉染效率及最佳轉染效率之重量比是根據分子量及細胞種類而有所不同,為cell-dependent。細胞毒性試驗之結果顯示,三種不同的幾丁聚醣在四個不同的細胞株上均無細胞毒性。螢光顯微鏡之影像亦可以觀察到chitosan之轉染情形及蛋白質分布狀態。
由本研究可知,幾丁聚醣為安全無毒,和基因結合後能促進基因之轉染,是一個具有發展潛力的基因載體。由於幾丁聚醣之轉染效率具有細胞特異性,本研究之結果可供作相關細胞或組織之轉染參考。
Gene therapy refers to the transfection of DNA encoding a therapeutic gene into the targeted cells or organs with expression of the transgene. Recently, gene therapy has received attention due to its potential application in the replacement of dysfunctional gene and treatment of acquired diseases. The electronegativity of the naked DNA tends to inhibit itself from entering most negatively-charged cell membrane. Moreover, the unprotected DNA is rapidly degraded by nuclease. The most important issue in gene therapy is to develop a safe and effective gene transfection system. Several methods have been developed to enhance the transfer of DNA into cells for gene therapy. Virus vectors are very effective, but they have fatal drawbacks such as immune response and oncogenic effects when used in vivo. Non-viral vectors, generally consisting of cationic liposomes and linear cationic polymers, have several advantages over viral vectors. However, non-viral gene delivery has its limitations such as toxicity and low transfection efficiency. Chitosan is a cheap, biocompatible, biodegradable, and non-toxic polymer that forms polyelectrolyte complex with DNA.
In this study, three different chitosans, chitosan 100, chitosan 500, and low molecular weight chitosan, were characterized and evaluated as a gene delivery vector in four different human cell lines. The objectives were to investigate the formation of plasmid/chitosan complex, and to evaluate the transfection efficiency of the complexes which chitosans formed with plasmid, pCMV-β, in human cell lines, including basal cell carcinoma (BCC), human immortalized keratinocytes (HaCaT), human hepatoma cells (Huh7), and human gastric carcinoma cells (AGS). The cytotoxicity of three different chitosans was determined by MTT assay, and localization of reporter gene, pEGFP-C1, expression in the transfected cells was examined using microscopes.
The reaults showed that all chitosans formed complex with plasmids in appropriate weight ratios except water soluble chitosan. At a plasmid/chitosan weight ratio between 1:1~1:10, the most effective transfection efficiency was obtained at weight ratio of 1:5 in BCC cells, and the transfection efficiency of chitosans in Huh7 was lower than other cells. The transfection efficiency of chitosans in skin cell lines (BCC and HaCaT) is higher than other cell lines (Huh7 and AGS). The influence of molecular weight of chitosans in transfection efficiency appeared to be cell-dependent. In addition, DNA/chitosans complex showed negligible cytotoxicity for four different cell lines. Microscopic examination revealed that the gene expression products were distributed in the entire cell including cytosol and nuclei.
In conclusion, this study demonstrated that plasmid DNA formed complexes with chitosan 100, chitosan 500, and low molecular weight chitosan, and was effectively transfected into four different human cells lines. Therefore, the non-cytotoxic chitosans have the potential for safe and efficient non-viral gene delivery.
Aberdam, D., Galliano, M. F., Vailly, J., Pulkkinen, L., Bonifas, J., Christiano, A. M., Tryggvason, K., Uitto, J., Epstein, E. H., Jr., and Ortonne, J. P. (1994). Herlitz's junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the gamma 2 subunit of nicein/kalinin (LAMININ-5). Nat Genet 6, 299-304.
Anderson, S. C., Johnson, D. E., Harris, M. P., Engler, H., Hancock, W., Huang, W. M., Wills, K. N., Gregory, R. J., Sutjipto, S., Wen, S. F., Lofgren, S., Shepard, H. M., and Maneval, D. C. (1998). p53 gene therapy in a rat model of hepatocellular carcinoma: intra-arterial delivery of a recombinant adenovirus. Clin Cancer Res 4, 1649-59.
Aspden, T. J., Mason, J. D., Jones, N. S., Lowe, J., Skaugrud, O., and Illum, L. (1997). Chitosan as a nasal delivery system: the effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. J Pharm Sci 86, 509-13.
Audouy, S. A., de Leij, L. F., Hoekstra, D., and Molema, G. (2002). In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res 19, 1599-605.
Barranco, S. C., Townsend, C. M., Jr., Quraishi, M. A., Burger, N. L., Nevill, H. C., Howell, K. H., and Boerwinkle, W. R. (1983). Heterogeneous responses of an in vitro model of human stomach cancer to anticancer drugs. Invest New Drugs 1, 117-27.
Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham, A., and Fusenig, N. E. (1988). Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106, 761-71.
Boyle, P. (1997). Global burden of cancer. Lancet 349 Suppl 2, SII23-6.
Bressac, B., Galvin, K. M., Liang, T. J., Isselbacher, K. J., Wands, J. R., and Ozturk, M. (1990). Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S A 87, 1973-7.
Bristow, R. G., Benchimol, S., and Hill, R. P. (1996). The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother Oncol 40, 197-223.
Chen, J. P., Lin, C., Xu, C. P., Zhang, X. Y., and Wu, M. (2000). The therapeutic effects of recombinant adenovirus RA538 on human gastric carcinoma cells in vitro and in vivo. World J Gastroenterol 6, 855-860.
Chiang, L. C., Chiang, W., Yu, H. S., Sheu, H. M., and Chen, H. Y. (1994). Establishment and characterization of a continuous human basal cell carcinoma cell line from facial skin (I) cytological behavior of early passages. Gaoxiong Yi Xue Ke Xue Za Zhi 10, 170-6.
Correa, P. (1992). Human gastric carcinogenesis: a multistep and multifactorial process--First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. Cancer Res 52, 6735-40.
Dalgleish, A. G. (1997). Why: gene therapy? Gene Ther 4, 629-30.
De Smedt, S. C., Demeester, J., and Hennink, W. E. (2000). Cationic polymer based gene delivery systems. Pharm Res 17, 113-26.
Deshpande, D., Blezinger, P., Pillai, R., Duguid, J., Freimark, B., and Rolland, A. (1998). Target specific optimization of cationic lipid-based systems for pulmonary gene therapy. Pharm Res 15, 1340-7.
Duncan, J. E., Whitsett, J. A., and Horowitz, A. D. (1997). Pulmonary surfactant inhibits cationic liposome-mediated gene delivery to respiratory epithelial cells in vitro. Hum Gene Ther 8, 431-8.
Eady, R. A., and Dunnill, M. G. (1994). Epidermolysis bullosa: hereditary skin fragility diseases as paradigms in cell biology. Arch Dermatol Res 287, 2-9.
Erbacher, P., Zou, S., Bettinger, T., Steffan, A. M., and Remy, J. S. (1998). Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharm Res 15, 1332-9.
Ernst, N., Ulrichskotter, S., Schmalix, W. A., Radler, J., Galneder, R., Mayer, E., Gersting, S., Plank, C., Reinhardt, D., and Rosenecker, J. (1999). Interaction of liposomal and polycationic transfection complexes with pulmonary surfactant. J Gene Med 1, 331-40.
Fang, N., Chan, V., Mao, H. Q., and Leong, K. W. (2001). Interactions of phospholipid bilayer with chitosan: effect of molecular weight and pH. Biomacromolecules 2, 1161-8.
Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M. (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84, 7413-7.
Ferber, D. (2001). Gene therapy. Safer and virus-free? Science 294, 1638-42.
Ferreira, C. G., Tolis, C., and Giaccone, G. (1999). p53 and chemosensitivity. Ann Oncol 10, 1011-21.
Guang Liu, W., and De Yao, K. (2002). Chitosan and its derivatives--a promising non-viral vector for gene transfection. J Control Release 83, 1-11.
Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., Taite, H., Scoular, R., Miller, A., and Reeve, A. E. (1998). E-cadherin germline mutations in familial gastric cancer. Nature 392, 402-5.
Gupta, K. C., and Ravi Kumar, M. N. (2000). Drug release behavior of beads and microgranules of chitosan. Biomaterials 21, 1115-9.
Hansson, L. E., Baron, J., Nyren, O., Bergstrom, R., Wolk, A., and Adami, H. O. (1994). Tobacco, alcohol and the risk of gastric cancer. A population-based case-control study in Sweden. Int J Cancer 57, 26-31.
Hejazi, R., and Amiji, M. (2003). Chitosan-based gastrointestinal delivery systems. J Control Release 89, 151-65.
Huang, M., Khor, E., and Lim, L. Y. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21, 344-53.
Huber, M., Rettler, I., Bernasconi, K., Frenk, E., Lavrijsen, S. P., Ponec, M., Bon, A., Lautenschlager, S., Schorderet, D. F., and Hohl, D. (1995). Mutations of keratinocyte transglutaminase in lamellar ichthyosis. Science 267, 525-8.
Humphreys, M. J., Ghaneh, P., Greenhalf, W., Campbell, F., Clayton, T. M., Everett, P., Huber, B. E., Richards, C. A., Ford, M. J., and Neoptolemos, J. P. (2001). Hepatic intra-arterial delivery of a retroviral vector expressing the cytosine deaminase gene, controlled by the CEA promoter and intraperitoneal treatment with 5-fluorocytosine suppresses growth of colorectal liver metastases. Gene Ther 8, 1241-7.
Illum, L. (1998). Chitosan and its use as a pharmaceutical excipient. Pharm Res 15, 1326-31.
Illum, L., Farraj, N. F., and Davis, S. S. (1994). Chitosan as a novel nasal delivery system for peptide drugs. Pharm Res 11, 1186-9.
Khavari, P. A. (1998). Gene therapy for genetic skin disease. J Invest Dermatol 110, 462-7.
Kiang, T., Wen, J., Lim, H. W., and Leong, K. W. (2004). The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 25, 5293-301.
Kyrlagkitsis, I., and Karamanolis, D. G. (2004). Genes and gastric cancer. Hepatogastroenterology 51, 320-7.
La Vecchia, C., Negri, E., Franceschi, S., and Gentile, A. (1992). Family history and the risk of stomach and colorectal cancer. Cancer 70, 50-5.
Laitinen, M., Hartikainen, J., Hiltunen, M. O., Eranen, J., Kiviniemi, M., Narvanen, O., Makinen, K., Manninen, H., Syvanne, M., Martin, J. F., Laakso, M., and Yla-Herttuala, S. (2000). Catheter-mediated vascular endothelial growth factor gene transfer to human coronary arteries after angioplasty. Hum Gene Ther 11, 263-70.
Lee, K. Y., Kwon, I. C., Kim, Y. H., Jo, W. H., and Jeong, S. Y. (1998). Preparation of chitosan self-aggregates as a gene delivery system. J Control Release 51, 213-20.
Lee, M., Nah, J. W., Kwon, Y., Koh, J. J., Ko, K. S., and Kim, S. W. (2001). Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm Res 18, 427-31.
Lehnert, T., Otto, G., and Herfarth, C. (1995). Therapeutic modalities and prognostic factors for primary and secondary liver tumors. World J Surg 19, 252-63.
Leong, K. W., Mao, H. Q., Truong-Le, V. L., Roy, K., Walsh, S. M., and August, J. T. (1998). DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 53, 183-93.
Li, S., Wu, S. P., Whitmore, M., Loeffert, E. J., Wang, L., Watkins, S. C., Pitt, B. R., and Huang, L. (1999). Effect of immune response on gene transfer to the lung via systemic administration of cationic lipidic vectors. Am J Physiol 276, L796-804.
Lim, S. T., Martin, G. P., Berry, D. J., and Brown, M. B. (2000). Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Control Release 66, 281-92.
MacLaughlin, F. C., Mumper, R. J., Wang, J., Tagliaferri, J. M., Gill, I., Hinchcliffe, M., and Rolland, A. P. (1998). Chitosan and depolymerized chitosan oligomers as condensing carriers for in vivo plasmid delivery. J Control Release 56, 259-72.
Mansouri, S., Lavigne, P., Corsi, K., Benderdour, M., Beaumont, E., and Fernandes, J. C. (2004). Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 57, 1-8.
Mao, H. Q., Roy, K., Troung-Le, V. L., Janes, K. A., Lin, K. Y., Wang, Y., August, J. T., and Leong, K. W. (2001). Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Release 70, 399-421.
Miyazaki, S., Ishii, K., and Nadai, T. (1981). The use of chitin and chitosan as drug carriers. Chem Pharm Bull (Tokyo) 29, 3067-9.
Miyazaki, S., Yamaguchi, H., Yokouchi, C., Takada, M., and Hou, W. M. (1988). Sustained-release and intragastric-floating granules of indomethacin using chitosan in rabbits. Chem Pharm Bull (Tokyo) 36, 4033-8.
Nagamoto, T., Hattori, Y., Takayama, K., and Maitani, Y. (2004). Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm Res 21, 671-4.
Niidome, T., and Huang, L. (2002). Gene therapy progress and prospects: nonviral vectors. Gene Ther 9, 1647-52.
Oligino, T. J., Yao, Q., Ghivizzani, S. C., and Robbins, P. (2000). Vector systems for gene transfer to joints. Clin Orthop, S17-30.
Park, I. K., Park, Y. H., Shin, B. A., Choi, E. S., Kim, Y. R., Akaike, T., Cho, C. S., Park, Y. K., and Park, Y. R. (2000). Galactosylated chitosan-graft-dextran as hepatocyte-targeting DNA carrier. J Control Release 69, 97-108.
Philip, R., Liggitt, D., Philip, M., Dazin, P., and Debs, R. (1993). In vivo gene delivery. Efficient transfection of T lymphocytes in adult mice. J Biol Chem 268, 16087-90.
Pugh, J. C., Yaginuma, K., Koike, K., and Summers, J. (1988). Duck hepatitis B virus (DHBV) particles produced by transient expression of DHBV DNA in a human hepatoma cell line are infectious in vitro. J Virol 62, 3513-6.
Pulkkinen, L., Christiano, A. M., Airenne, T., Haakana, H., Tryggvason, K., and Uitto, J. (1994). Mutations in the gamma 2 chain gene (LAMC2) of kalinin/laminin 5 in the junctional forms of epidermolysis bullosa. Nat Genet 6, 293-7.
Rao, S. B., and Sharma, C. P. (1997). Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34, 21-8.
Richardson, S. C., Kolbe, H. V., and Duncan, R. (1999). Potential of low molecular mass chitosan as a DNA delivery system: biocompatibility, body distribution and ability to complex and protect DNA. Int J Pharm 178, 231-43.
Romoren, K., Thu, B. J., and Evensen, O. (2002). Immersion delivery of plasmid DNA. II. A study of the potentials of a chitosan based delivery system in rainbow trout (Oncorhynchus mykiss) fry. J Control Release 85, 215-25.
Roy, K., Mao, H. Q., Huang, S. K., and Leong, K. W. (1999). Oral gene delivery with chitosan--DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5, 387-91.
Sangro, B., Herraiz, M., and Prieto, J. (2003). Gene therapy of neoplastic liver diseases. Int J Biochem Cell Biol 35, 135-48.
Sato, T., Ishii, T., and Okahata, Y. (2001). In vitro gene delivery mediated by chitosan. effect of pH, serum, and molecular mass of chitosan on the transfection efficiency. Biomaterials 22, 2075-80.
Somia, N., and Verma, I. M. (2000). Gene therapy: trials and tribulations. Nat Rev Genet 1, 91-9.
Stribling, R., Brunette, E., Liggitt, D., Gaensler, K., and Debs, R. (1992). Aerosol gene delivery in vivo. Proc Natl Acad Sci U S A 89, 11277-81.
Takayama, K., Hirata, M., Machida, Y., Masada, T., Sannan, T., and Nagai, T. (1990). Effect of interpolymer complex formation on bioadhesive property and drug release phenomenon of compressed tablet consisting of chitosan and sodium hyaluronate. Chem Pharm Bull (Tokyo) 38, 1993-7.
Testino, G., Cornaggia, M., and Valentini, M. (1999). Helicobacter pylori, pre-neoplastic changes, gastric cancer: a point of view. Eur J Gastroenterol Hepatol 11, 357-9.
Thanou, M., Florea, B. I., Geldof, M., Junginger, H. E., and Borchard, G. (2002). Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23, 153-9.
Tousignant, J. D., Gates, A. L., Ingram, L. A., Johnson, C. L., Nietupski, J. B., Cheng, S. H., Eastman, S. J., and Scheule, R. K. (2000). Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid:plasmid DNA complexes in mice. Hum Gene Ther 11, 2493-513.
van der Merwe, S. M., Verhoef, J. C., Verheijden, J. H., Kotze, A. F., and Junginger, H. E. (2004). Trimethylated chitosan as polymeric absorption enhancer for improved peroral delivery of peptide drugs. Eur J Pharm Biopharm 58, 225-35.
Xu, G. W., Sun, Z. T., Forrester, K., Wang, X. W., Coursen, J., and Harris, C. C. (1996). Tissue-specific growth suppression and chemosensitivity promotion in human hepatocellular carcinoma cells by retroviral-mediated transfer of the wild-type p53 gene. Hepatology 24, 1264-8.