簡易檢索 / 詳目顯示

研究生: 鄭峻澈
Cheng, Jiunn-Chur
論文名稱: 定向能量沉積法應用於Inconel 718之多相流數值建模與製程參數之研究
Study of the Effects of Process Parameters for Directed Energy Deposition of Inconel 718 by Multiphase Flow Model
指導教授: 温昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 定向能量沉積技術數值模擬Inconel 718多相流模型馬蘭格尼效應
外文關鍵詞: Directed energy deposition (DED), Numerical simulation, Inconel 718, Multiphase flow model, Marangoni effect
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為建立適用於積層製造(Additive Manufacturing)中的定向能量沉積法(Directed Energy Deposition, DED)的數值模型,藉由商用軟體ANSYS Fluent建構一個三維暫態的單軌單層DED加工模型,以Inconel 718做為金屬基板及粉末所使用之材料,探討多項製程參數以及馬蘭格尼效應對於熔池流動行為、熔池發展趨勢以及沉積層幾何外型的影響,研究使用多相流模型(Multiphase flow model)中的流體體積法(Volume Of Fluid, VOF)追蹤金屬相與氣體相之交界面、以熱焓多孔法來進行金屬相變化過程的模擬,使其更貼近實際之物理現象、藉由在連續方程式中加入金屬粉末源項,並且以高斯分布之經驗公式進行考慮,模擬實際加工中與雷射同軸之供粉頭供應金屬粉末的情形、考慮保護氣體所產生之強制對流效應以及因表面張力梯度所導致的馬蘭格尼效應(Marangoni effect),並透過與文獻進行沉積層幾何尺寸驗證,確立本研究所建構之模型的可靠性。
    研究結果顯示,當改變雷射製程參數時,隨著單位時間輸入工件之熱能提升,熔池的發展速度會增快,且無因次參數Ma數及Pe數與熔池尺寸大致呈正相關,此外金屬沉積層之高度及寬度也會隨之成長,但沉積層之平坦度則會因能量的提升而變差;改變粉末供應之濃度時,沉積層體積會隨濃度的提升而增大,但僅有沉積高度會受到影響,沉積寬度幾乎不會改變;馬蘭格尼效應為熔池流動之主導力,對於溫度場分布及流速有極大影響,但對於最終沉積層尺寸則無太大影響;此外,使用平頂雷射進行加工時,由於其能量分布均勻的特性,與高斯雷射相比會有較為優秀之沉積建構效率,在相同的製程參數下會有較大的沉積層體積。

    The purpose of this research is to develop a three-dimensional model for directed energy deposition (DED) process. In this research Inconel 718 is used as material, and the study focuses on how process parameters and Marangoni force affect the development of molten pool and formation of cladding layer. In order to enhance the accuracy of the model, volume of fluid (VOF) method is used to capture the interface of metal phase and gas phase for the multiphase flow model. Enthalpy porosity method is used to simulate the phase change of the metal phase. Powder source is assumed to be Gaussian distribution and is treated as a source term in continuity equation. The effect of force convection due to shielding gas and other force such as buoyancy force, surface tension and Marangoni force are also considered in this model by using user defined function (UDF). Through the verification with similar research, it is proved that the model is reliable in predicting the geometry of cladding layer.
    The results show that with the increase in energy input per time, the development of molten pool becomes faster, and dimensionless parameters Ma and Pe are highly related to the size of the molten pool. Besides, the width and height of the cladding layer also increase. As the powder concentration increases, the volume of the cladding layer increase and the cladding height increase as well, but it has a minimum effect on cladding width. The results also show that Marangoni effect plays a significant role in the flow behavior of molten pool, but it has less influence on the geometry of the cladding layer. Moreover, by comparing the results with different laser beams, using flattop laser beam shows better cladding efficiency than using Gaussian laser beam.

    摘要 I 誌謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 符號說明 XVII 第一章 緒論 1 1-1 研究背景 1 1-1.1 積層製造發展背景 1 1-1.2 積層製造技術方法 2 1-1.3 定向能量沉積技術 3 1-2 文獻回顧 5 1-2.1 DED數值模擬方法及製程參數對成品影響 5 1-2.2 馬蘭格尼效應對DED製程的影響性 10 1-3 研究動機與目的 12 1-4 全文架構 12 第二章 基礎理論 13 2-1 雷射理論 13 2-1.1 雷射工作原理 13 2-1.2 光纖雷射 15 2-1.3 雷射能量分布 17 2-2 鎳基超合金介紹 21 2-3 相變化模型 22 2-4 多相流模型 25 2-5 無因次參數 27 第三章 研究方法 28 3-1 物理模型 28 3-1.1 基本假設 28 3-1.2 統御方程式 30 3-1.3 初始條件與邊界條件 34 3-2 材料熱物性質 35 3-3 數值模擬流程 42 3-4 模型測試 42 3-4.1 網格測試 42 3-4.2 時間步伐測試 44 3-5 沉積形狀驗證 47 第四章 結果與討論 51 4-1 DED暫態發展過程 51 4-2 雷射製程參數影響 59 4-3 粉末製程參數影響 65 4-3.1 改變粉末質量流率 65 4-3.2 改變粉末噴射半徑 68 4-4 馬蘭格尼效應影響 71 4-5 雷射能量分布影響 77 第五章 結論與未來工作 84 5-1 結論 84 5-2 未來工作 85 參考文獻 86

    [1] Ian Gibson, I. G. (2015). Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing.
    [2] Yan, Z., Liu, W., Tang, Z., Liu, X., Zhang, N., Li, M., & Zhang, H. (2018). Review on thermal analysis in laser-based additive manufacturing. Optics & Laser Technology, 106, 427-441.
    [3] Lim, J. S., Oh, W. J., Lee, C. M., & Kim, D. H. (2021). Selection of effective manufacturing conditions for directed energy deposition process using machine learning methods. Scientific reports, 11(1), 1-13.
    [4] Peyre, P., Aubry, P., Fabbro, R., Neveu, R., & Longuet, A. (2008). Analytical and numerical modelling of the direct metal deposition laser process. Journal of Physics D: Applied Physics, 41(2), 025403.
    [5] 黃昱穎, (2020)"定向能量沉積技術應用於718鎳基超合金多軌多層掃描之製程參數參數影響及微結構數值研究,"國立成功大學機械工程學系碩士論文.
    [6] Liu, Z., Zhang, H. C., Peng, S., Kim, H., Du, D., & Cong, W. (2019). Analytical modeling and experimental validation of powder stream distribution during direct energy deposition. Additive Manufacturing, 30, 100848.
    [7] Tabernero, I., Lamikiz, A., Ukar, E., De Lacalle, L. L., Angulo, C., & Urbikain, G. (2010). Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. Journal of Materials Processing Technology, 210(15), 2125-2134.
    [8] Heigel, J. C., Michaleris, P., & Reutzel, E. W. (2015). Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V. Additive manufacturing, 5, 9-19.
    [9] Qi, H., Mazumder, J., & Ki, H. (2006). Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. Journal of applied physics, 100(2), 024903.
    [10] Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of computational physics, 79(1), 12-49.
    [11] Kheloufi, K., & Amara, E. H. (2011). Simulation of Geometry and Heat Transfer in a Thin Wall Produced by Direct Laser Powder Deposition. In Advanced Materials Research (Vol. 227, pp. 134-137). Trans Tech Publications Ltd.
    [12] Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225.
    [13] Alya, S., Vundru, C., Ankamreddy, B., & Singh, R. (2019). Characterization and modeling of deposition geometry in directed energy deposition over inclined surfaces. Procedia Manufacturing, 34, 695-703.
    [14] Sreekanth, S., Ghassemali, E., Hurtig, K., Joshi, S., & Andersson, J. (2020). Effect of direct energy deposition process parameters on single-track deposits of alloy 718. Metals, 10(1), 96.
    [15] Kistler, N. A., Nassar, A. R., Reutzel, E. W., Corbin, D. J., & Beese, A. M. (2017). Effect of directed energy deposition processing parameters on laser deposited Inconel® 718: Microstructure, fusion zone morphology, and hardness. Journal of Laser Applications, 29(2), 022005.
    [16] Lee, Y., & Farson, D. F. (2016). Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing. Journal of Laser Applications, 28(1), 012006.
    [17] De Oliveira, U., Ocelik, V., & De Hosson, J. T. M. (2005). Analysis of coaxial laser cladding processing conditions. Surface and Coatings Technology, 197(2-3), 127-136.
    [18] Lee, Y. S., Nordin, M., Babu, S. S., & Farson, D. F. (2014). Influence of fluid convection on weld pool formation in laser cladding. Weld. J, 93(8), 292-300.
    [19] Le, T. N., & Lo, Y. L. (2019). Effects of sulfur concentration and Marangoni convection on melt-pool formation in transition mode of selective laser melting process. Materials & Design, 179, 107866.
    [20] Zhang, Y. M., Lim, C. W. J., Tang, C., & Li, B. (2021). Numerical investigation on heat transfer of melt pool and clad generation in directed energy deposition of stainless steel. International Journal of Thermal Sciences, 165, 106954.
    [21] Manvatkar, V., De, A., & DebRoy, T. (2014). Heat transfer and material flow during laser assisted multi-layer additive manufacturing. Journal of Applied Physics, 116(12), 124905.
    [22] 蔣旻軒, (2019)"定向能量沉積技術應用於718鎳基超合金之多層掃描數值建模與製程參數影響及優化熱分析,"國立成功大學機械工程學系碩士論文.
    [23]"StimulatedEmmision,"Available:https://commons.wikimedia.org/wiki/File:Stimulated_Emission.svg
    [24]"LaserOpticsResourceGuide,"Available:https://www.edmundoptics.com.tw/knowledge-center/application-notes/lasers/gaussian-beam-propagation/
    [25] 楊隆昌. (2014). "雷射發展的趨勢與應用".
    [26] Roberts, I. A., Wang, C. J., Esterlein, R., Stanford, M., & Mynors, D. J. (2009). A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. International Journal of Machine Tools and Manufacture, 49(12-13), 916-923.
    [27] " Laser Optics Resource Guide,"Available:https://www.edmundoptics.com/know ledge-center/application-notes/lasers/laser-optics-resource-guide/
    [28] Ready, J. (2012). Effects of high-power laser radiation. Elsevier.
    [29] Fuse, K. (2010). Flattop Beam Generation and Multibeam Processing Using Aspheric and Diffractive Optics. Journal of Laser Micro/Nanoengineering, 5(2).
    [30] 李名言, (2013)"鎳基合金材質特性介紹," 中工高雄會刊,第21 卷,第一期, pp.23-30.
    [31] Calandri, M., Yin, S., Aldwell, B., Calignano, F., Lupoi, R., & Ugues, D. (2019). Texture and microstructural features at different length scales in Inconel 718 produced by selective laser melting. Materials, 12(8), 1293.
    [32] A. Fluent, (2011) "Ansys fluent theory guide," ANSYS Inc., USA, vol. 15317.
    [33] Voller, V. R., & Prakash, C. (1987). A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems. International journal of heat and mass transfer, 30(8), 1709-1719.
    [34] Yang, L. X., Peng, X. F., & Wang, B. X. (2001). Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing. International Journal of Heat and Mass Transfer, 44(23), 4465-4473.
    [35] Van Elsen, M., Al‐Bender, F., & Kruth, J. P. (2008). Application of dimensional analysis to selective laser melting. Rapid Prototyping Journal.
    [36] Saldi, Z. S. (2012). Marangoni driven free surface flows in liquid weld pools.
    [37] Gan, Z., Yu, G., He, X., & Li, S. (2017). Numerical simulation of thermal behavior and multicomponent mass transfer in direct laser deposition of Co-base alloy on steel. International Journal of Heat and Mass Transfer, 104, 28-38.
    [38] Chande, T., & Mazumder, J. (1985). Two‐dimensional, transient model for mass transport in laser surface alloying. Journal of applied physics, 57(6), 2226-2232.
    [39] Mirzade, F. K., Niziev, V. G., Panchenko, V. Y., Khomenko, M. D., Grishaev, R. V., Pityana, S., & van Rooyen, C. (2013). Kinetic approach in numerical modeling of melting and crystallization at laser cladding with powder injection. Physica B: Condensed Matter, 423, 69-76.
    [40] Song, B., Yu, T., Jiang, X., Xi, W., Lin, X., Ma, Z., & Wang, Z. (2022). Development of the molten pool and solidification characterization in single bead multilayer direct energy deposition. Additive Manufacturing, 49, 102479.
    [41] Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of computational physics, 100(2), 335-354.
    [42] Chen, Q., Guillemot, G., Gandin, C. A., & Bellet, M. (2018). Numerical modelling of the impact of energy distribution and Marangoni surface tension on track shape in selective laser melting of ceramic material. additive manufacturing, 21, 713-723.
    [43] Qiu, C., Panwisawas, C., Ward, M., Basoalto, H. C., Brooks, J. W., & Attallah, M. M. (2015). On the role of melt flow into the surface structure and porosity development during selective laser melting. Acta Materialia, 96, 72-79.
    [44] Wang, S., Zhu, L., Dun, Y., Yang, Z., Fuh, J. Y. H., & Yan, W. (2021). Multi-physics modeling of direct energy deposition process of thin-walled structures: defect analysis. Computational Mechanics, 67(4), 1229-1242.
    [45] "Table of Total Emmisivity,"Avaiable https://www.academia.edu/22294514/Table_of_Total_Emissivity
    [46] Alimardani, M., Toyserkani, E., & Huissoon, J. P. (2007). A 3D dynamic numerical approach for temperature and thermal stress distributions in multilayer laser solid freeform fabrication process. Optics and Lasers in Engineering, 45(12), 1115-1130.
    [47] Toyserkani, E., Khajepour, A., & Corbin, S. (2003). Three-dimensional finite element modeling of laser cladding by powder injection: effects of powder feedrate and travel speed on the process. Journal of Laser Applications, 15(3), 153-160.
    [48] Bai, X., Colegrove, P., Ding, J., Zhou, X., Diao, C., Bridgeman, P., ... & Williams, S. (2018). Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. International Journal of Heat and Mass Transfer, 124, 504-516.
    [49] Wang, S., Zhu, L., Fuh, J. Y. H., Zhang, H., & Yan, W. (2020). Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition. Optics and Lasers in Engineering, 127, 105950.
    [50] Pottlacher, G., Hosaeus, H., Kaschnitz, E., & Seifter, A. (2002). Thermophysical properties of solid and liquidInconel 718 Alloy. Scandinavian Journal of Metallurgy, 31(3), 161-168.
    [51] Li, S., Xiao, H., Liu, K., Xiao, W., Li, Y., Han, X., ... & Song, L. (2017). Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed-and continuous-wave laser additive manufacturing: A comparative study. Materials & design, 119, 351-360.
    [52] Anderson, M., Patwa, R., & Shin, Y. C. (2006). Laser-assisted machining of Inconel 718 with an economic analysis. International Journal of Machine Tools and Manufacture, 46(14), 1879-1891.
    [53] Dilip, D. G., Ananthan, S. P., Panda, S., & Mathew, J. (2019). Numerical simulation of the influence of fluid motion in mushy zone during micro-EDM on the crater surface profile of Inconel 718 alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(2), 1-14.
    [54]"PressureVelocityCoupling,"Avaiable:https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node373.htm
    [55] Barth, T., & Jespersen, D. (1989, January). The design and application of upwind schemes on unstructured meshes. In 27th Aerospace sciences meeting (p. 366).
    [56] Ubbink, O. (1997). Numerical prediction of two fluid systems with sharp interfaces.

    無法下載圖示 校內:2027-06-25公開
    校外:2027-06-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE