| 研究生: |
陳采君 Chen, Tsai-Chun |
|---|---|
| 論文名稱: |
聯伸二苯衍生物之環化反應研究:環辛四烯與螺旋型衍生物之合成 Cyclization Reactions of Biphenylene Derivatives: Synthesis of Cyclooctatetraene and Helical Derivatives |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 多環芳香烴 、聯伸二苯 、環辛四烯 、螺旋烯 |
| 外文關鍵詞: | Polycyclic Aromatic Hydrocarbons, Biphenylenes, Helicenes, Cyclooctatetraene |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為兩個部分,旨在以聯伸二苯為核心骨架,透過環化反應擴展其π共軛系統,進一步合成環辛四烯與螺旋烯等衍生物,期望拓展其於有機電子材料領域的應用潛力。
第一部分以實驗室先前合成的聯伸二苯衍生物化合物9為起始物,嘗試合成具有環辛四烯主結構且具高平面性的衍生物。在一條合成路徑中,成功開發出一項酸促進的分子內環化反應,藉此反應合成出苯炔中間體的關鍵前驅物化合物19d。該中間體經單晶繞射分析確認其分子結構,為後續相關反應機制與衍生物設計奠定重要基礎。另一條路徑則利用鈴木偶聯反應合成出具有環辛四烯主結構的化合物21,並利用酸促進環化反應獲得了分子量與目標產物相同的化合物,後續仍需進一步鑑定以確認其結構。
第二部分同樣以化合物9作為起點,期望透過金屬催化與環化反應合成螺旋烯衍生物。實驗中以鈴木偶聯反應成功合成出具有三個聯伸二苯單元的化合物27,然而在後續環化反應中僅觀察到氧化副產物生成,推測可能與溶劑中的氧化源相關,其具體生成機制尚不明確,仍需進一步實驗監測與機構探討加以釐清。
雖然本研究尚未成功合成預期的目標分子,然於中間體的設計、合成與結構鑑定方面已取得關鍵性進展。未來可望透過反應條件的優化與機制研究,持續探索螺旋型與平面型共軛分子的有效合成途徑。
Biphenylene is a planar antiaromatic molecule with distinctive physical properties and reactivity, making it a valuable scaffold for extending π-conjugated systems. Through strategic molecular design and synthesis, its stereostructure and electronic characteristics can be effectively modulated. This study focuses on the synthesis of biphenylene-based derivatives incorporating cyclooctatetraene and helicene frameworks.
In this study, we first developed a novel acid-promoted intramolecular cyclization reaction and applied it to the synthesis of compound 19d. The structure of 19d was unambiguously confirmed by X-ray single-crystal diffraction analysis, which revealed that it serves as a potential benzyne precursor. In the second part of this work, a palladium-catalyzed Suzuki coupling reaction was employed to successfully synthesize compound 27, which incorporates three biphenyl units. However, attempts to further convert this intermediate into compound 28 were unsuccessful, resulting instead in monocyclized and oxidized byproducts. These outcomes suggest that further optimization of the reaction conditions will be necessary to achieve the desired transformation.
1. Toda, F.; Garratt, P. Chem. Rev. 1992, 92, 1685–1707.
2. Fawcett, J. K.; Trotter, J. Acta Crystallogr. 1966, 20, 87–93.
3. Leung, M.-K.; Viswanath, M. B.; Chou, P.-T.; Pu, S.-C.; Lin, H.-C.; Jin, B.-Y. J. Org. Chem. 2005, 70, 3560–3568.
4. Adam, W.; Balci, M.; Kilic, H. J. Org. Chem. 1998, 63, 8544–8546.
5. Lin, S.-C.; Chen, J.-A.; Liu, M.-H.; Su, Y. O.; Leung, M.-K. J. Org. Chem. 1998, 63, 5059–5063.
6. Lothrop, W. C. J. Am. Chem. Soc. 1941, 63, 1187–1191.
7. Campbell, C. D.; Rees, C. W. J. Chem. Soc. C: Org. 1969, 742–747.
8. Berris, B. C.; Lai, Y.-H.; Vollhardt, K. P. C. J. Chem. Soc., Chem. Commun. 1982, 953–954.
9. Schaub, T.; Radius, U. Tetrahedron Lett. 2005, 46, 8195–8197.
10. Wang, S.-L.; Pan, M.-L.; Su, W.-S.; Wu, Y.-T. Angew. Chem., Int. Ed. 2017, 56, 14694–14697.
11. Willstätter, R.; Waser, E. Chem. Ber. 1911, 44, 3423–3445.
12. Traetteberg, M. Acta Chem. Scand. 1966, 20, 1724–1726.
13. Bordner, J.; Parker, R. Acta Crystallogr., Sect. B: Struct. Sci. 1972, 28, 1069–1075.
14. Karadakov, P. B. J. Phys. Chem. A 2008, 112, 12707–12713.
15. Schleyer, P. v. R.; Maerker, C.; Dransfeld, A.; Jiao, H.; van Eikema Hommes, N. J. R. J. Am. Chem. Soc. 1996, 118, 6317–6318.
16. Wilcox, C., Jr.; Uetrecht, J.; Grantham, K.; Grohmann, K. J. Am. Chem. Soc. 1975, 97, 1914–1920.
17. Hellwinkel, D. Angew. Chem., Int. Ed. Engl. 1970, 9, 527–528.
18. Ohmae, T.; Nishinaga, T.; Wu, M.; Iyoda, M. J. Am. Chem. Soc. 2010, 132, 1066–1074.
19. Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem., Int. Ed. 1966, 5, 385–415.
20. Mori, K.; Murase, T.; Fujita, M. Angew. Chem., Int. Ed. 2015, 54, 6847–6851.
21. Mandal, B. K.; Sooksimuang, T. J. Porphyrins Phthalocyanines 2002, 6, 66–72.
22. Jenard-De Koninck, A.; Defay, N.; De Ridder, R. Bull. Soc. Chim. Belg. 1960, 69, 558–562.
23. Ohmori, K.; Kitamura, M.; Suzuki, K. Angew. Chem., Int. Ed. 1999, 38, 1226–1229.
24. Shimizu, M.; Nagao, I.; Tomioka, Y.; Kadowaki, T.; Hiyama, T. Tetrahedron 2011, 67, 8014–8026.
25. Chen, P.-Y.; Liu, Y.-C.; Hung, H.-Y.; Pan, M.-L.; Wei, Y.-C.; Kao, T.-C.; et al. Org. Lett. 2021, 23, 8794–8798.
26. 吳宛稜碩士論文:國立成功大學 民國一一十三年 七月
27. Liu, R. S.; Mukherjee, A.; Pati, K. J. Org. Chem. 2009, 74, 6311–6314.
28. Leroux, F. R.; Berthelot, A.; Bonnafoux, L.; Panossian, A.; Colobert, F. Chem. Eur. J. 2012, 18, 14232–14236.
29. Greulich, T. W.; Yamaguchi, E.; Doerenkamp, C.; Lübbesmeyer, M.; Daniliuc, C. G.; Fukazawa, A.; Eckert, H.; Yamaguchi, S.; Studer, A. Chem. Eur. J. 2017, 23, 6029–6033.
30. Kabir, S. M. H.; Iyoda, M. Synthesis 2000, 2000, 1839–1842.
31. Luliński, S.; Serwatowski, J. J. Org. Chem. 2003, 68, 5384–5387.7
32. Kabir, S. H.; Hasegawa, M.; Kuwatani, Y.; Yoshida, M.; Matsuyama, H.; Iyoda, M. J. Chem. Soc., Perkin Trans. 1 2001, 159–165.