| 研究生: |
姜文挺 Chiang, Wen-Ting |
|---|---|
| 論文名稱: |
不同人工時效處理對摩擦攪拌Al-xZn-1Mg鋁合金拉伸性質影響之研究 The Effects of Different Artificial Aging Treatments on the Tensile Properties of Friction Stir Processed Al-xZn-1Mg Aluminum Alloys |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng |
| 共同指導教授: |
陳立輝
Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | Al-Zn-Mg系鋁合金 、摩擦攪拌製程 、人工時效 |
| 外文關鍵詞: | Al-Zn-Mg aluminum alloy, friction stir process, artificial aging |
| 相關次數: | 點閱:108 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
7xxx系鋁合金為高強度的析出強化型合金,因具有較其他系列鋁合金高的強度及破壞韌性等優點,目前廣泛應用於國防、航太及汽車等工業。由前人研究的結果顯示高鎂含量的7075與7050合金經摩擦攪拌製程 (FSP)後拉伸性質大多都會發生劣化的情況,但對於低鎂含量之合金並未深入探討,因此本實驗選定低鎂含量的商用材7005 (依其Zn/Mg比命名為ZM35)進行FSP,攪拌後接著再進行數種人工時效,觀察拉伸性質之變化。此外,為觀察不同Zn/Mg比合金FSP後性質變化是否相似,本實驗另外以ZM57 (Zn:Mg=6.34:1.11)進行上述試驗。
實驗結果顯示,ZM35與ZM57合金經時效達穩定之攪拌材強度同樣有劣化的情形,其中兩種合金降伏強度之劣化率皆高於30%,抗拉強度劣化率約為10%;延性方面反而有提升的效果,兩種合金皆可提升至20%左右。攪拌後進行數種人工時效雖可改善強度劣化之情況,但仍不及攪拌母材。
數種人工時效處理中,ZM35與ZM57合金經一階段 (40℃/96hr與80℃/16hr)與二階段 (80℃/16hr+T6)處理,有相似的拉伸性質變化,其中二階段處理可大幅改善強度劣化之情況。然而兩種合金經三階段 (T4+80℃/16hr+T6)處理後拉伸性質會明顯有不同的變化,對ZM35合金而言,強度會較二階段處理再略為提升,但同樣低於攪拌母材,延性則會再次下降;但ZM57合金之強度與延性皆會下降,其中延性的劣化率甚至高達60%。
The precipitation-hardening 7xxx series aluminum alloys are widely used in the aircraft and military industry, due to the higher strength and fracture toughness than other series aluminum alloys. Now the most researches about friction stir process focus more on high Mg content 7050 and 7075 alloy, which showed the tensile properties would be worse than the base metal (T6 treatment), but less on low Mg content alloys. In this study, we are aimed to observe the change of tensile properties by several artificial aging treatments on friction stir processed low Mg content commercial 7005 Al alloy, which is also called ZM35 because of its Zn/Mg ratio. In order to compare with ZM35, we also use the same process on ZM57 alloy which has different Zn/Mg ratio.
After the process of friction stir and then natural aging for 12 days, the experiment results show that the strength of ZM35 and ZM57 would be deteriorated compared to base metal. The deterioration rate of YS is more than 30% and UTS is about 10%, but the ductility is raised to 20% instead. Thus, after the several artificial aging treatments, the strength of the material which is as-FSP condition could be promoted, but it still worse than base metal.
In the several artificial aging treatments, one-step (40℃/96hr and 80℃/16hr) and two-step (80℃/16hr+T6) treatments exhibit the similar results for ZM35 and ZM57 alloys. In addition, the strength of the material which is as-FSP condition could be improved by using two-step treatments. After three-step (T4+80℃/16hr+T6) treatment, the tensile properties have different results in ZM35 and ZM57 alloys: for ZM35, the strength became better and the ductility got worse than two-step treatments; for ZM57, the strength and the ductility both decreased, and the deterioration rate of the ductility even reached 60%.
參考文獻
1. P. Cavaliere, A. Squillace, “High temperature deformation of friction stir processed 7075 aluminium alloy”, Materials Characterization, vol. 55, pp.136-142, 2005.
2. C.P. You, A.W. Thompson, I.M. Bernstein, “Ductile fracture processes in 7075 aluminum”, Metall. Mater. Trans. A., vol. 26A, pp. 407-415, 1995.
3. D. Altenpohl, “ Aluminium”, Vol.37, pp.401-411, 1961.
4. D.R. Askeland, “The science and engineering of materials”, PWS Publishing Company, pp.367-370, 1994.
5. L.F. Mondolfo, “Aluminum alloys : structure and properties PART4”, Butter Worths, pp.844-848, 1976.
6. T. Engdahl, V. Hansen, P.J. Warren, K. Stiller, “Investigation of fine scale precipitates in Al-Zn-Mg alloys after various heat treatments”, Mater. Sci. & Eng. A, Vol.327, pp.59-64, 2002.
7. 吳翼貽, 蔡和晉, 林猷貴,「錳元素含量對中高強度鋁合金熱處理製程的影響」,金屬熱處理,2007。
8. J.E. Hatch, “Aluminum properties and physical metallurgy”, American Society for Metals, Metals Park, Ohio, p.106, 1984.
9. J.J. Thompson, E.S. Tankins, V.S. Agarwala, “A heat treatment for reducing corrosion and stress corrosion cracking susceptibilities in 7xxx aluminum alloys”, Materials Performance, Vol. 26, pp. 45-52, 1987.
10. G.W. Lorimer, R.B. Nicholson, “Further result on the nucleation of precipitates in the Al-Zn-Mg system”, Acta Metall., Vol. 14, pp.1009-1013, 1966.
11. V. Hansen, L. k. Berg, M. Knutson-Wedel, K. Stiller, “Energy filter electron diffraction and atom probe investigation of artificial ageing in an Al-Zn-Mg alloy,” in: H.A.C. Benavides, M.J. Yacaman (Eds.), Proceeding s of Electron Microscopy, ICEM14, Cancun, Mexico, pp. 161-162, 1998.
12. L.K. Berg, J. Gjonnes, “GP-zones in Al-Zn-Mg alloys and their role in artificial aging”, Acta mater., Vol. 49, pp.3443-3451, 2001.
13. K. Stiller, P.J. Warren, “ Investigation of precipitation in an Al-Zn-Mg alloys after two-step ageing treatment at 100° and 150℃”, Mater. Sci. and Eng. A, Vol.270, pp.55-63, 2000.
14. 英國銲接研究所(TWI): www.twi.co.uk
15. Y. Ma, R.S. Mishra, M.W. Mahoney, “Superplastic deformation behaviour of friction stir processed 7075Al alloy”, Acta Mater., Vol. 50, pp.4419-4430, 2002.
16. R.S. Mishra, M.W. Mahoney, S.X. McFadden, “High strain rate superplasticity in a friction stir processed 7075 Al alloy”, Mater. Sci., Vol. 42, pp163-168, 2002.
17. W.J. arbegast, K.S. baker, P.J. hartley: Proc. 5th Int. Conf. on “Trends in welding research”, Pine Mountain, GA, USA, ASM International, 1998.
18. U. Chakkingal, P.F. Thomson, “Microstructure development during equal channel angular drawing of Al at room temperature”, Scripta Material, Vol.39, No.6, pp. 677-684, 1998.
19. O. Engler, X.W. Kong, K. Lucke, “Recrystallization textures of particle-containing Al-Cu and Al-Mn single crystals”, Acta Metall., Vol.49, No.10, pp. 1701-1715, 2001.
20. R. Kaibyshev, O. Sitdikov, A. Goloborodko, T. Sakai, “Grain refinement in as-cast 7475 aluminum alloy under hot deformation”, Mater. Sci. Eng. A., Vol.344, No.1-2, pp. 348-356, 2003.
21. S. Benavifes, Y. Li, L.E. Murr, “Ultrafine grained materials”, TMS. Warrendale. PA., p. 155, 2000.
22. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, “Properties of friction-stir-welded 7075 T651 aluminum”, Metall. and Mater. Trans. A, Vol. 29A, pp. 1955-1964, 1997.
23. Y.S. Sato, M. Urata, H. Kokawa, “Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminum alloys”, Mater. Sci. Eng. A, 354, pp. 298-305, 2003.
24. L. Fratini, G. Buffa, “CDRX modeling in friction stir welding of aluminium alloys”, Int. J. Mach. Tools Manufact., Vol.45, pp.1188-1194, 2005.
25. 高全盛,吳翼貽,林昆民 「析出強化機制對AA7005鋁擠型合金熱處理後製程之影響」,金屬熱處理第84期,pp. 13-19,2006。
26. J.-Q. Su, T.W. Nelson, M. Mahoney, “Microstructural investigation of friction stir welded 7050-T651 aluminium”, Acta Mater., Vol.51, pp.713-729, 2003.
27. N. Ryum, “Precipitation and recrystallization in an Al-0.5wt.% Zr-alloy”, Acta Metall., Vol.17, No.3, pp. 269-278, 1969.
28. M. Kanno, B.-L. Ou, “Heterogeneous precipitation of intermediate phases on Al3Zr particles in Al-Cu-Zr and Al-Li-Cu-Zr alloys”, Mater. Trans. JIM, Vol. 32, pp.445-450, 1991.
29. R.D. Doherty, “Role of interfaces in kinetics of internal shape changes”, Metal Sci., Vol.16, pp. 1-13, 1982.
30. 楊智綱,「高強度航空用7000系鋁合金機械性質、抗應力腐蝕破壞性及銲接熱影響區特性之研究」,國立中央大學機械工程研究所,博士論文,2001。
31. 黃展鴻,「摩擦攪拌7075鋁合金組織特性及拉伸性質之後熱處理效應探討」,國立成功大學材料及工程學系,碩士論文,2007。