| 研究生: |
王君偉 Wang, Jun-Wei |
|---|---|
| 論文名稱: |
奈米碳管/環氧樹脂與石墨烯/環氧樹脂複合材料之奈米壓痕試驗研究 Nano-indentation studies on epoxy composites reinforced by nanotube and graphene |
| 指導教授: |
李旺龍
Li, Wang-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 奈米碳管 、石墨烯 、奈米複合材料 、奈米壓痕試驗 |
| 外文關鍵詞: | carbon nanotubes, graphene nanoplatelets, nanocomposites, Nano-indentation test |
| 相關次數: | 點閱:99 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從飯島澄男博士Sumio Iijima在1991年發現奈米碳管以來,許多高分子奈米複合材料的研究就有如雨後春筍般蓬勃發展起來。奈米碳管不僅擁有著傑出的物理性能,更可以與高分子材料複合來提高複合材料的彈性模數E和硬度H等機械性能。爾後在2004年A. K. Gei和Novoselov K. S. 用3M膠帶機械剝離的方式從天然石墨裡製備出石墨烯。這個劃時代的新材料有著絕佳、特殊的物理性質,石墨烯不僅開啟了一個新的凝態物理研究領域,更因為石墨烯可以良好均勻地分散在各種聚合物當中,使得它在高分子複合材料當中開創了一個嶄新的視野與許多應用的未來。
在本文中,我們對奈米碳管/環氧樹脂和石墨烯/環氧樹脂複合材料的力學性質進行研究。我們使用高壓均質機和三輥輪研磨機來分散奈米碳管(CNT)和膨脹性石墨烯薄層(EGNP)至環氧樹脂當中。用微拉曼光譜來驗證石墨烯薄層/環氧樹脂的結構特性。接著我們用奈米壓痕機來量測奈米碳管 /環氧樹脂和石墨烯/環氧樹脂的機械性質。奈米碳管與石墨烯能提升高分子材料其彈性模數與硬度。在低濃度的時候,奈米碳材能夠大大地提升聚合物之機械性能,但當濃度越來越高時,奈米碳材就越難均勻分散在基材當中,所提升之效益非我們所預期的一樣。另外也進行了關於石墨烯/環氧樹脂的黏彈性行試驗,來了解此奈米複合材料之黏彈性的行為。添加了石墨烯的環氧樹脂,其潛變位移也有減少的趨勢。
Since Iijima discovered carbon nanotubes in 1991, many studies on the polymer nanocomposites has been mushroomed at recent years. Carbon nanotube has improved the physical properties of polymers. The mechanical properties of nanocomposites such as the elastic modulus, E, and the hardness, H has had a significant improvement. Then, in 2004, A.K. Geim and K.S. Novoselov separated graphene from graphite by mechanical cleavage, the extraordinary physical properties and ability to be dispersed in various polymer matrices has created a new field of polymer nanocomposites, an extensive research in the field has been initiated.
In this study we investigate the influence of nano-carbon reinforcements on mechanical properties of carbon nanotube/epoxy and graphene nanoplatelets/epoxy composites. Carbon nanotube (CNT) and expanded graphene nanoplatelets (EGNP) were dispersed within epoxy resins using a high pressure processor and a three roll milling. Characteristics on EGNPs/epoxy was confirmed with micro-Raman spectroscopy.
Nano-indentation test was performed on the nano-composites. The interction of CNT and EGNP improved the modulus and hardness of the composite. However, a significant increase of mechanical properties was seen at the low nano-carbon content, but it is more and more difficult to disperse homogeneously with higher concentrations. Also the viscoelastic behavior of graphene nanoplatelets/epoxy composites is examined by the nano- indentations test .
[1] P. Ball, “Roll up for the revolution”, Nature, Vol.414, pp.142-144, (2001).
[2] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley,“C60: Buckminsterfullerene”, Nature, Vol.318, pp.162-163, (1985).
[3] S. Iijima, ”Helical microtubules of graphitic carbon”, Nature, Vol.354, pp. 56-58, (1991).
[4] M. S. Dresselhaus, G. Dressekhaus, and R. Saito, “Physice of carbon nanotubes“, Carbon, Vol.33, pp.883-891, (1995).
[5] Y. Saito, and Y. Tani. , “Diameters of Single-Wall Carbon Nanotubes Depending on Helium Gas Pressure in an Arc Discharge”, Phys. Chem. B, Vol.104 , pp.2495-2499, (2000).
[6] Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue and S. L. Zhang, “Large scale synthesis of single-wall nanotubes by arc-discharge method”, Journal of Physics of Solids, Vol.61, pp.1031-1036, (2000).
[7] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes ”, Science, Vol.273, pp.483-487, (1996).
[8] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, ”Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, Vol.243, pp.49-54, (1995).
[9] S. Zhu, C. H. Su, J.C. Cochrane, S. Lehoczky, Y. Cui, A. Burger “Growth oriention of carbon nanotubes by thermal chemical vapor deposition”, Journal of Crystal Growth, Vol.234, pp.584, (2002).
[10] B. P. Ramesh, W. J. Blau, P. K. Tyagi, D. S. Misra and N. Ali, “Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition”, Thin Solid Films, Vol.494, pp.128-132, (2006).
[11] C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, W. S. Kim, Y. H. Lee, W. B. Choi, N. S. Lee , J. M. Kim, Y. G. Choi, S. C. Yu “Synthesis of uniformly distributed carbon nanotubes on a large area of si substrates by thermal chemical vapor deposition”, Appl. Phys. Lett, Vol.75, p.1721, (1999).
[12] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically”, Thin Carbon FilmsScience, Vol.306, pp.666-669, (2004).
[13] Alexander, “The ideal crystalline structure of graphene is a hexagonal grid”,Wikipedia, (2010).
[14] A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nature materials, Vol.6, pp.183-191, (2007).
[15] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu,Y. P. Feng, Z. X. Shen, “Graphene Thickness Determination Using Reflection and Contrast Spectroscopy” Nano Letters, Vol.7, No.9, pp.2758-2763, (2007).
[16] H. M. Wang, Y. H. Wu, Z. H. Ni, and Z. X. Shen, “Electronic transport and layer engineering in multilayer grapheme Structures”, Applied Physics Lettes, Vol.92, No.053504, (2008)
[17] M. I. Katsnelson, “Graphene: carbon in two dimensions”, Materialstoday, Vol.10, No.1-2, (2007).
[18] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene”, Nano Letters, Vol.8, pp.902-907, (2008).
[19] D. Li, R. B. Kaner, “Graphene-Based Materials”, Science, Vol.320, pp.1170-1171, (2008).
[20] A. H. Castro Neto, ”The electronic properties of graphene”, Rev. Mod. Phys, Vol.81, No.1, pp.109-162, (2009).
[21] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, "Large scale pattern growth of graphene films for stretchable transparent electrodes", Nature, Vol.457, p. 706, (2009).
[22] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong and S. Iijima,”Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotechnology, Vol.5, pp.574-578, (2010).
[23] 莊鎮宇, ”石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展”, 物理雙月刊, 33卷, 22期, pp.155-162, (2012).
[24] Xuesong Li, Wei wei Cai, Jinho An, ”Large-Area Synthesis of High-Qualityand Uniform Graphene Films on Copper Foils” , Science Vol.324 , No.5932, pp.1312-1314, (2009).
[25] H. Fukushima, ”Graphite nanoreinforcements in polymer nanocomposites”, East Lansing, Dissertation Abstracts International, Vol.64-05, Section: B, pp.2343-23287, (2003).
[26] J. Lu , L. T. Drzal,R. M. Worclen , “Nanometal-decorated exfolialed graphite nanoplalelel based glucose biosensors With high sensitive and fast response”, ACS Nano , Vol.2, pp.1825-1832, (2007).
[27] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son,V. Bulovic, M. S. Dresselhaus, and J. Kong, “Layer Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition Nano”, Letter 9, p.30, (2009).
[28] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, ” Highly conducting graphene sheets and Langmuir–Blodgett films”, Nanotechnology, Vol.3, pp.538, (2008).
[29] Z. Sun, Z. Yan, J. Yao, Elvira Beitler, Y. Zhu, J. M. Tour, “Growth of graphene from solid carbon sources”, Nature, Vol.468, pp.549-552, (2010).
[30] Ajayan, P. M., ”Nanocomposite science and technology”, (2003).
[31] M. J. Biercuka, M. C. Llaguno, M. Radosavljevicb, J. K. Hyunc, A. T. Johnson, ”Carbon nanotube composites for thermal management”, Physics Letters, Vol.80, pp.2767, (2002).
[32] D. Qian, G. J. Wagner, and W. K. Liu, ” Mechanics of carbon nanotubes” , Appl Mech Rev, Vol.55, No.6, (2002).
[33] Paola Ciselli, ”The Potential of Carbon Nanotubes in Polymer Composites” Macromolecules, Vol.39 , pp.5194–5205, (2007).
[34] R. Andrews, M. C. Weisenberger, “Carbon nanotube polymer composites”, Solid State and Materials Science , Vol.8, pp.31-37, (2004).
[35] D. Qian, E. C. Dickey, R. Andrews , T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. “, Applied Physics Letters, Vol.80, pp.2868-2870, ( 2000).
[36] B. Safadi, “Multiwalled Carbon Nanotube Polymer Composites:Synthesis and Characterization of Thin Films”, Journal of Applied Polymer Science, Vol.84, pp.2660-2669, (2002)
[37] K. T. Lau, S. Q. Shi, and H. M. Cheng, ” Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures”, Compos. Sci. Technol, Vol.63, pp.1161-1164, (2003).
[38] A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, “Mechanical And Electrical Properties of a MWNT/Epoxy Composite”, Composites Science & Technology, Vol.62, No.15, pp.1993-1998, (2002).
[39] S. Stankovich, D. A. Dikin, “Graphene-based composite materials”, Nature, Vol.44, p.220, ( 2006).
[40] H. Kim, A. A. Abdala, “Graphene/Polymer Nanocomposites”, Macromolecules, Vol.43, No.16, (2010).
[41] Barun Das, K.E. Prasad, U. Ramamurty, C. N. R. Rao, “Nano-indentation studies on polymer matrix composites reinforced by few-layer grapheme” Nanotechnology, Vol.20, No.25705, (2009).
[42] C. G. Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, Vol.321, No.5887, (2008).
[43] K. E. Prasad, Barun Dasb, U. Maitra, U. Ramamurty, and C. N. R. Rao, “Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons”, PNAS August 11, Vol. 106, No.32, pp.13186-13189, (2009)
[44] C. A. Folsom, F. W. Zok, F. F. Lange, D. B. Marshall, ”Mechanical behavior of a laminar ceramic/fiber-reinforced epoxy composite”, Journal of the American Ceramic Society, Vol.75, pp.2969-2975, (1992).
[45] S. Zhao, L. S. Schadler, R. Duncan, H. Hillborg, T. Auletta, Composites Science and Technology, Vol.68, pp.2965-2975, (2008).
[46] Erik T Thostenson, T. W. Chou, “On the elastic properties of carbon nanotube-based composites: modeling and characterization”, Appl. Phys, Vol.36, pp.573-582, (2003).
[47] M. A. Rafiee, Javad Rafiee, Z. Wang, H. Song, Z. Z. Yu, “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content “, American Chemical Society, Vol.3, No.12, (2009).
[48] Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T Lim, and K. P Loh, “Graphene–Polymer Nanofiber Membrane for Ultrafast Photonics”, Adv. Funct. Mater, Vol.20, pp.782-791, (2010).
[49] X. Zhao, Q. Zhang, D. Chen, ”Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites”, Macromolecules, Vol.43, pp.2357-2363, (2010).
[50] T. RamaNnaathan, A. A. bfala, S. Stankovlch, D. A. Dlkln, ” Functionalized graphene sheets for polymer nanocomposites”, Nanotechnology, Vol.3 , pp.327-331, (2008)
[51] S. Chatterjee, F. Nüesch, B. Chu, ”Comparing carbon nanotubes and graphene nanoplatelets as reinforcements n polyamide 12 composites” Nanotechnology, Vol.22, No.275714, (2011)
[52] R. Hollertz, S. Chatterjee, H. Gutmann, T. Geiger, F. A. Nüesch, B. T. T. Chu, ”Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes”, Nanotechnology, Vol.22, No.125702 , (2011)
[53] K. L. Johnson, Contact Mechanics, Cambridge University Press, Chap3、4, (1985)
[54] W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research Society ,Vol.7, No.6, (1992).
[55] A. E. Giannakopoulos and S. Suresh, “Determination of elastoplastic properties by instrumented sharp indentation”, Scripta Materialia, Vol.40, No.10, pp.1191–1198, (1999)
[56] I. N. Sneddon, “The relationship between load and penetration in the axi-symmetric Boussinesq problem for a punch of arbitrary profile”, International journal of Engineering Society , Vol.40, pp.47-57, (1965)
[57] R. B. King, “Elastic analysis of some punch problems for a layered medium”, International journal of Solids Structures, Vol.23, No.12, pp. 1657-1664, (1987)
[58] A. C. Pipkin, “Lectures on Viscoelasticity Theory”, Second Edition
[59] R. A. Schapery, “Correspondence principles and a generalizedJ integral for large deformation and fracture analysis of viscoelastic media”, International journal of Fracture, Vol.25, pp.195-223, (1984).
[60] Hill. R, “Theory of mechanical properties of fibre-strengthened materials: Elastic behavior ” , J. Mech. Phys. Solids, (1964).
[61] C. Lee, X. D Wei, J. W. Kysar, J. Hone, “ Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science Vol.321, No.5887, pp.385-388, (2008).
[62] Reddy, S. Rajendran, K. M. Liew, “Equilibrium configuration and continuum elastic properties of finite sized graphene”, Nanotechnology Vol.17, pp.864, (2006).
[63] H. Hiura, T.W. Ebbesen, K. Tanigaki and H. Takahashi,” Raman studies of carbon nanotubes “, Chemical Physics letters, Vol.202, No.6 , (1993).
[64] D. Puglia, L. Valentini, J. M. Kenny, “Analysis of the Cure Reaction of Carbon Nanotubes/Epoxy Resin Composites Through Thermal Analysis and Raman Spectroscopy”, Journal of Applied Polymer Science, Vol.88, pp.452-458, (2003)
[65] S. Chatterjee, J. W. Wang , W. S. Kuo , ”Mecahnical reinforcement and thermal conductivity in expanded Graohene Nnanoplates reinforced Epoxy Composites”
[66] I. Manika and J. Maniks, ”Size effects in micro- and nanoscale indentation”, Acta Materialia, Vol.54, pp.2049-2056, (2006).
[67] W. W. Gerberich, N. I. Tymiak, J. C. Grunlan, M. F. Horstemeyer, M. I. Baskes,” Interpretations of Indentation Size Effects”, Journal of Applied Mechanics, Vol.69, pp.433-442, (2002).
[68] J. C. Halpin Affdl, J. L. Kardos, ” The Halpin-Tsai Equations: A Review”, Polymer Engineering Aand Science, Vol.16, No.5, (1976).
[69] B. J. Briscoe, L. Fiori, and E. Pelillo, “Nano-indentation of polymericSurfaces”, Journal of Physics D: Applied Physics, Vol.31, p. 2395, (1998).
[70] S. Yang, Y. W. Zhang, and K. Zeng, ”Analysis of nanoindentationcreep for polymeric materials”, Journal of Applied Physics, Vol.95, p.3655, (2004).
[71] H. M. Pollock, D. Maugis, and M. Barquins, ”MicroindentationTech”. In Mat. Sci. & Eng, P. J. Blau and R. Lawn, (1986).
[72] M. J. Mayo, R. W. Seigel, Y. X. Liao, and W. D. Nix, ”Nanoindentation of Nanocrystalline ZnO”, J. Mater, Vol.7, p.973, (1992).