簡易檢索 / 詳目顯示

研究生: 王君偉
Wang, Jun-Wei
論文名稱: 奈米碳管/環氧樹脂與石墨烯/環氧樹脂複合材料之奈米壓痕試驗研究
Nano-indentation studies on epoxy composites reinforced by nanotube and graphene
指導教授: 李旺龍
Li, Wang-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 85
中文關鍵詞: 奈米碳管石墨烯奈米複合材料奈米壓痕試驗
外文關鍵詞: carbon nanotubes, graphene nanoplatelets, nanocomposites, Nano-indentation test
相關次數: 點閱:99下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從飯島澄男博士Sumio Iijima在1991年發現奈米碳管以來,許多高分子奈米複合材料的研究就有如雨後春筍般蓬勃發展起來。奈米碳管不僅擁有著傑出的物理性能,更可以與高分子材料複合來提高複合材料的彈性模數E和硬度H等機械性能。爾後在2004年A. K. Gei和Novoselov K. S. 用3M膠帶機械剝離的方式從天然石墨裡製備出石墨烯。這個劃時代的新材料有著絕佳、特殊的物理性質,石墨烯不僅開啟了一個新的凝態物理研究領域,更因為石墨烯可以良好均勻地分散在各種聚合物當中,使得它在高分子複合材料當中開創了一個嶄新的視野與許多應用的未來。
    在本文中,我們對奈米碳管/環氧樹脂和石墨烯/環氧樹脂複合材料的力學性質進行研究。我們使用高壓均質機和三輥輪研磨機來分散奈米碳管(CNT)和膨脹性石墨烯薄層(EGNP)至環氧樹脂當中。用微拉曼光譜來驗證石墨烯薄層/環氧樹脂的結構特性。接著我們用奈米壓痕機來量測奈米碳管 /環氧樹脂和石墨烯/環氧樹脂的機械性質。奈米碳管與石墨烯能提升高分子材料其彈性模數與硬度。在低濃度的時候,奈米碳材能夠大大地提升聚合物之機械性能,但當濃度越來越高時,奈米碳材就越難均勻分散在基材當中,所提升之效益非我們所預期的一樣。另外也進行了關於石墨烯/環氧樹脂的黏彈性行試驗,來了解此奈米複合材料之黏彈性的行為。添加了石墨烯的環氧樹脂,其潛變位移也有減少的趨勢。

    Since Iijima discovered carbon nanotubes in 1991, many studies on the polymer nanocomposites has been mushroomed at recent years. Carbon nanotube has improved the physical properties of polymers. The mechanical properties of nanocomposites such as the elastic modulus, E, and the hardness, H has had a significant improvement. Then, in 2004, A.K. Geim and K.S. Novoselov separated graphene from graphite by mechanical cleavage, the extraordinary physical properties and ability to be dispersed in various polymer matrices has created a new field of polymer nanocomposites, an extensive research in the field has been initiated.
    In this study we investigate the influence of nano-carbon reinforcements on mechanical properties of carbon nanotube/epoxy and graphene nanoplatelets/epoxy composites. Carbon nanotube (CNT) and expanded graphene nanoplatelets (EGNP) were dispersed within epoxy resins using a high pressure processor and a three roll milling. Characteristics on EGNPs/epoxy was confirmed with micro-Raman spectroscopy.
    Nano-indentation test was performed on the nano-composites. The interction of CNT and EGNP improved the modulus and hardness of the composite. However, a significant increase of mechanical properties was seen at the low nano-carbon content, but it is more and more difficult to disperse homogeneously with higher concentrations. Also the viscoelastic behavior of graphene nanoplatelets/epoxy composites is examined by the nano- indentations test .

    中文摘要………………………………………………………………… I 英文摘要…………………………………………………………………II 誌謝…………………………………………………………………… III 目錄………………………………………………………………………IV 表目錄………………………………………………………………… VII 圖目錄…………………………………………………………………VIII 符號總表…………………………………………………………………XI 第一章 緒論…………………………………………………………… 1 1.1 前言…………………………………………………………………1 第二章 文獻回顧及研究動機與目的………………………………… 2 2.1 奈米碳管……………………………………………………………2 2.1.1 奈米碳管的起源……………………………………………2 2.1.2 奈米碳管的製備方法………………………………………7 2.2 石墨烯…………………………………………………………… 12 2.2.1 石墨烯的興起………………………………………………12 2.2.2 石墨烯的製備方法…………………………………………15 2.3 奈米碳管與石墨烯高分子聚合物複合材料之發展…………… 17 2.4 研究動機與目的………………………………………………… 19 第三章 奈米壓痕理論簡介與分析……………………………………20 3.1 基本加減載壓痕試驗…………………………………………… 20 3.2 連續勁度量測試驗……………………………………………24 3.3 黏彈性材料之力學行為………………………………………27 第四章 奈米壓痕量測實驗操作………………………………………32 4.1 試驗材料的製備………………………………………………… 32 4.1.1 奈米碳管/環氧樹脂的製備……………………………… 32 4.1.2 石墨烯/環氧樹脂的製備………………………………… 35 4.2 微拉曼光譜儀…………………………………………………… 37 4.3 Nano-indenter G200連續剛性量測試驗操作流程與參數設定 ……………………………………………………………………………37 第五章 結果與討論……………………………………………………39 5.1 拉曼共振譜分析………………………………………………… 39 5.2 奈米碳管/環氧樹脂複合物壓痕量測結果………………………46 5.3 石墨烯薄層/環氧樹脂複合物壓痕量測結果……………………58 5.4 黏彈性試驗……………………………………………………… 72 5.5 黏彈性試驗結果…………………………………………………73 第六章  結論………………………………………………………… 77 第七章  參考文獻…………………………………………………… 79 作者簡介…………………………………………………………………85 表目錄 表 2.1 單壁奈米碳管的結構參數…………………………………… 6 表 2.2 奈米碳管與石墨烯的特性比較………………………………18 表 5.1 石墨烯/環氧樹脂複合材料的拉曼光譜G-band峰值的面積…………………………………………………………………………41 表 5.2 不同奈米碳管重量百分濃度的平均最大負載………………50 表 5.3 不同奈米碳管重量百分濃度的平均硬度……………………51 表 5.4 不同奈米碳管重量百分濃度的平均彈性模數………………51 表 5.5 不同石墨烯重量百分濃度的平均最大負載…………………61 表 5.6 不同石墨烯重量百分濃度的平均硬度………………………61 表 5.7 不同石墨烯重量百分濃度的平均彈性模數…………………61 表 5.8 奈米碳管與石墨烯結構參數…………………………………69 圖目錄 圖 2.1 Iijima所拍攝的奈米碳管之穿透式電子顯微鏡圖………… 4 圖 2.2 奈米碳管的二維石墨平面的向量圖………………………… 4 圖 2.3 (a)椅型奈米碳管(armchair CNT)(b)鋸齒型奈米碳管(zigzag CNT).(c)螺旋型奈米碳管(chiral CNT)…………………… 5 圖 2.4 電弧放電示意圖……………………………………………… 8 圖 2.5 雷射氣化法示意圖…………………………………………… 9 圖 2.6 化學氣相沉積示意圖………………………………………… 9 圖 2.7 奈米碳管之成長機制-碳經由催化劑擴散………………… 10 圖 2.8 奈米碳管之成長機制-碳經由催化劑表面擴散…………… 10 圖 2.9 奈米碳管頂端成長機制與底部成長機制……………………11 圖 2.10 石墨烯晶體六角型晶格的結構………………………………13 圖 2.11 石墨烯及以其為基礎的各種奈米材料,包括(a)巴克球(fullerene, C60) (b)奈米碳管(CNTs) (c)石墨(graphite)……14 圖 2.12 美國哥倫比亞大學與韓國三星公司合作的研究團隊成功把石墨烯轉移柔軟的聚二甲基矽氧烷透明基板……………………………14 圖 2.13 機械剝離法所製得之石墨烯的SEM影像…………………… 16 圖 3.1 探針載重P與探針位移深度h之關係曲線……………………23 圖 3.2 探針壓痕示意圖………………………………………………23 圖 3.3 連續勁度量測儀器圖…………………………………………26 圖 3.4 連續勁度量測CSM模組示意圖……………………………… 26 圖 4.1 奈米碳管/環氧樹脂複合材料的製備流程示意圖………… 33 圖 4.2 高壓均質機(M110Y, Microfluidics,.USA)………………34 圖 4.3 三輥輪研磨機(SDY200, B¨uhler AG, Switzerland)…… 34 圖 4.4 石墨烯/環氧樹脂複合材料的製備流程示意圖…………… 36 圖 4.5 奈米材料試驗機G200外觀全貌………………………………38 圖 5.1 多壁奈米碳管(MWNTs)的拉曼光譜………………………… 42 圖 5.2 膨脹性石墨烯薄片(EGNP)的拉曼光譜………………………43 圖 5.3 石墨烯/環氧樹脂複合材料的拉曼光譜…………………… 44 圖 5.4 石墨烯/環氧樹脂複合材料拉曼光譜G-band峰值變化…… 45 圖 5.5 奈米壓痕試驗壓痕點的光學影像……………………………52 圖 5.6 奈米碳管濃度為0.5%之試片SEM影像……………………… 52 圖 5.7 石墨烯濃度為1.0%之試片5000倍SEM影像………………… 53 圖 5.8 石墨烯濃度為1.0%之試片10000倍SEM影像…………………53 圖 5.9 不同奈米碳管含量的平均負載與壓痕深度曲線圖…………54 圖 5.10 不同奈米碳管含量的硬度與壓痕深度曲線…………………55 圖 5.11 不同奈米碳管含量的彈性模數與壓痕深度曲線………… 56 圖 5.12 奈米碳管/環氧樹脂平均硬度、平均彈性模數與奈米碳管含量關係圖…………………………………………………………………57 圖 5.13 不同石墨烯含量的平均負載與壓痕深度曲線………………62 圖 5.14 不同石墨烯含量的硬度與壓痕深度曲線圖…………………63 圖 5.15 不同石墨烯含量的彈性模數與壓痕深度圖曲線……………64 圖 5.16 石墨稀/環氧樹脂平均硬度、平均彈性模數與石墨稀含量關係圖………………………………………………………………………65 圖 5.17 石墨烯/環氧樹脂石墨稀重量百分濃度為2%的成分分析圖(a)石墨烯/環氧樹脂石墨稀壓痕附近的SEM圖(b)碳元素的分佈圖(c)氧元素的分佈圖(d)氯元素的分佈圖……………………………………… 66 圖 5.18 奈米碳管/環氧樹脂之彈性模數理論值與實驗值比較關係圖…………………………………………………………………………70 圖 5.19 石墨稀/環氧樹脂之彈性模數理論值與實驗值比較關係圖…………………………………………………………………………71 圖 5.20 黏彈性試驗之探針位移深度與時間之關係圖………………75 圖 5.21 黏彈性試驗之探針負載與時間之關係圖……………………76

    [1] P. Ball, “Roll up for the revolution”, Nature, Vol.414, pp.142-144, (2001).
    [2] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley,“C60: Buckminsterfullerene”, Nature, Vol.318, pp.162-163, (1985).
    [3] S. Iijima, ”Helical microtubules of graphitic carbon”, Nature, Vol.354, pp. 56-58, (1991).
    [4] M. S. Dresselhaus, G. Dressekhaus, and R. Saito, “Physice of carbon nanotubes“, Carbon, Vol.33, pp.883-891, (1995).
    [5] Y. Saito, and Y. Tani. , “Diameters of Single-Wall Carbon Nanotubes Depending on Helium Gas Pressure in an Arc Discharge”, Phys. Chem. B, Vol.104 , pp.2495-2499, (2000).
    [6] Z. Shi, Y. Lian, F. H. Liao, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, H. Li, K. T. Yue and S. L. Zhang, “Large scale synthesis of single-wall nanotubes by arc-discharge method”, Journal of Physics of Solids, Vol.61, pp.1031-1036, (2000).
    [7] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer, R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes ”, Science, Vol.273, pp.483-487, (1996).
    [8] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, ”Catalytic growth of single-walled nanotubes by laser vaporization”, Chemical Physics Letters, Vol.243, pp.49-54, (1995).
    [9] S. Zhu, C. H. Su, J.C. Cochrane, S. Lehoczky, Y. Cui, A. Burger “Growth oriention of carbon nanotubes by thermal chemical vapor deposition”, Journal of Crystal Growth, Vol.234, pp.584, (2002).
    [10] B. P. Ramesh, W. J. Blau, P. K. Tyagi, D. S. Misra and N. Ali, “Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemical vapour deposition”, Thin Solid Films, Vol.494, pp.128-132, (2006).
    [11] C. J. Lee, D. W. Kim, T. J. Lee, Y. C. Choi, Y. S. Park, W. S. Kim, Y. H. Lee, W. B. Choi, N. S. Lee , J. M. Kim, Y. G. Choi, S. C. Yu “Synthesis of uniformly distributed carbon nanotubes on a large area of si substrates by thermal chemical vapor deposition”, Appl. Phys. Lett, Vol.75, p.1721, (1999).
    [12] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically”, Thin Carbon FilmsScience, Vol.306, pp.666-669, (2004).
    [13] Alexander, “The ideal crystalline structure of graphene is a hexagonal grid”,Wikipedia, (2010).
    [14] A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nature materials, Vol.6, pp.183-191, (2007).
    [15] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu,Y. P. Feng, Z. X. Shen, “Graphene Thickness Determination Using Reflection and Contrast Spectroscopy” Nano Letters, Vol.7, No.9, pp.2758-2763, (2007).
    [16] H. M. Wang, Y. H. Wu, Z. H. Ni, and Z. X. Shen, “Electronic transport and layer engineering in multilayer grapheme Structures”, Applied Physics Lettes, Vol.92, No.053504, (2008)
    [17] M. I. Katsnelson, “Graphene: carbon in two dimensions”, Materialstoday, Vol.10, No.1-2, (2007).
    [18] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, “Superior Thermal Conductivity of Single-Layer Graphene”, Nano Letters, Vol.8, pp.902-907, (2008).
    [19] D. Li, R. B. Kaner, “Graphene-Based Materials”, Science, Vol.320, pp.1170-1171, (2008).
    [20] A. H. Castro Neto, ”The electronic properties of graphene”, Rev. Mod. Phys, Vol.81, No.1, pp.109-162, (2009).
    [21] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi and B. H. Hong, "Large scale pattern growth of graphene films for stretchable transparent electrodes", Nature, Vol.457, p. 706, (2009).
    [22] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong and S. Iijima,”Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotechnology, Vol.5, pp.574-578, (2010).
    [23] 莊鎮宇, ”石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展”, 物理雙月刊, 33卷, 22期, pp.155-162, (2012).
    [24] Xuesong Li, Wei wei Cai, Jinho An, ”Large-Area Synthesis of High-Qualityand Uniform Graphene Films on Copper Foils” , Science Vol.324 , No.5932, pp.1312-1314, (2009).
    [25] H. Fukushima, ”Graphite nanoreinforcements in polymer nanocomposites”, East Lansing, Dissertation Abstracts International, Vol.64-05, Section: B, pp.2343-23287, (2003).
    [26] J. Lu , L. T. Drzal,R. M. Worclen , “Nanometal-decorated exfolialed graphite nanoplalelel based glucose biosensors With high sensitive and fast response”, ACS Nano , Vol.2, pp.1825-1832, (2007).
    [27] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son,V. Bulovic, M. S. Dresselhaus, and J. Kong, “Layer Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition Nano”, Letter 9, p.30, (2009).
    [28] X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai, ” Highly conducting graphene sheets and Langmuir–Blodgett films”, Nanotechnology, Vol.3, pp.538, (2008).
    [29] Z. Sun, Z. Yan, J. Yao, Elvira Beitler, Y. Zhu, J. M. Tour, “Growth of graphene from solid carbon sources”, Nature, Vol.468, pp.549-552, (2010).
    [30] Ajayan, P. M., ”Nanocomposite science and technology”, (2003).
    [31] M. J. Biercuka, M. C. Llaguno, M. Radosavljevicb, J. K. Hyunc, A. T. Johnson, ”Carbon nanotube composites for thermal management”, Physics Letters, Vol.80, pp.2767, (2002).
    [32] D. Qian, G. J. Wagner, and W. K. Liu, ” Mechanics of carbon nanotubes” , Appl Mech Rev, Vol.55, No.6, (2002).
    [33] Paola Ciselli, ”The Potential of Carbon Nanotubes in Polymer Composites” Macromolecules, Vol.39 , pp.5194–5205, (2007).
    [34] R. Andrews, M. C. Weisenberger, “Carbon nanotube polymer composites”, Solid State and Materials Science , Vol.8, pp.31-37, (2004).
    [35] D. Qian, E. C. Dickey, R. Andrews , T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. “, Applied Physics Letters, Vol.80, pp.2868-2870, ( 2000).
    [36] B. Safadi, “Multiwalled Carbon Nanotube Polymer Composites:Synthesis and Characterization of Thin Films”, Journal of Applied Polymer Science, Vol.84, pp.2660-2669, (2002)
    [37] K. T. Lau, S. Q. Shi, and H. M. Cheng, ” Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures”, Compos. Sci. Technol, Vol.63, pp.1161-1164, (2003).
    [38] A. Allaoui, S. Bai, H. M. Cheng, J. B. Bai, “Mechanical And Electrical Properties of a MWNT/Epoxy Composite”, Composites Science & Technology, Vol.62, No.15, pp.1993-1998, (2002).
    [39] S. Stankovich, D. A. Dikin, “Graphene-based composite materials”, Nature, Vol.44, p.220, ( 2006).
    [40] H. Kim, A. A. Abdala, “Graphene/Polymer Nanocomposites”, Macromolecules, Vol.43, No.16, (2010).
    [41] Barun Das, K.E. Prasad, U. Ramamurty, C. N. R. Rao, “Nano-indentation studies on polymer matrix composites reinforced by few-layer grapheme” Nanotechnology, Vol.20, No.25705, (2009).
    [42] C. G. Lee, Xiaoding Wei, Jeffrey W. Kysar, James Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science, Vol.321, No.5887, (2008).
    [43] K. E. Prasad, Barun Dasb, U. Maitra, U. Ramamurty, and C. N. R. Rao, “Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons”, PNAS August 11, Vol. 106, No.32, pp.13186-13189, (2009)
    [44] C. A. Folsom, F. W. Zok, F. F. Lange, D. B. Marshall, ”Mechanical behavior of a laminar ceramic/fiber-reinforced epoxy composite”, Journal of the American Ceramic Society, Vol.75, pp.2969-2975, (1992).
    [45] S. Zhao, L. S. Schadler, R. Duncan, H. Hillborg, T. Auletta, Composites Science and Technology, Vol.68, pp.2965-2975, (2008).
    [46] Erik T Thostenson, T. W. Chou, “On the elastic properties of carbon nanotube-based composites: modeling and characterization”, Appl. Phys, Vol.36, pp.573-582, (2003).
    [47] M. A. Rafiee, Javad Rafiee, Z. Wang, H. Song, Z. Z. Yu, “Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content “, American Chemical Society, Vol.3, No.12, (2009).
    [48] Q. Bao, H. Zhang, J. X. Yang, S. Wang, D. Y. Tang, R. Jose, S. Ramakrishna, C. T Lim, and K. P Loh, “Graphene–Polymer Nanofiber Membrane for Ultrafast Photonics”, Adv. Funct. Mater, Vol.20, pp.782-791, (2010).
    [49] X. Zhao, Q. Zhang, D. Chen, ”Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites”, Macromolecules, Vol.43, pp.2357-2363, (2010).
    [50] T. RamaNnaathan, A. A. bfala, S. Stankovlch, D. A. Dlkln, ” Functionalized graphene sheets for polymer nanocomposites”, Nanotechnology, Vol.3 , pp.327-331, (2008)
    [51] S. Chatterjee, F. Nüesch, B. Chu, ”Comparing carbon nanotubes and graphene nanoplatelets as reinforcements n polyamide 12 composites” Nanotechnology, Vol.22, No.275714, (2011)
    [52] R. Hollertz, S. Chatterjee, H. Gutmann, T. Geiger, F. A. Nüesch, B. T. T. Chu, ”Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes”, Nanotechnology, Vol.22, No.125702 , (2011)
    [53] K. L. Johnson, Contact Mechanics, Cambridge University Press, Chap3、4, (1985)
    [54] W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research Society ,Vol.7, No.6, (1992).
    [55] A. E. Giannakopoulos and S. Suresh, “Determination of elastoplastic properties by instrumented sharp indentation”, Scripta Materialia, Vol.40, No.10, pp.1191–1198, (1999)
    [56] I. N. Sneddon, “The relationship between load and penetration in the axi-symmetric Boussinesq problem for a punch of arbitrary profile”, International journal of Engineering Society , Vol.40, pp.47-57, (1965)
    [57] R. B. King, “Elastic analysis of some punch problems for a layered medium”, International journal of Solids Structures, Vol.23, No.12, pp. 1657-1664, (1987)
    [58] A. C. Pipkin, “Lectures on Viscoelasticity Theory”, Second Edition
    [59] R. A. Schapery, “Correspondence principles and a generalizedJ integral for large deformation and fracture analysis of viscoelastic media”, International journal of Fracture, Vol.25, pp.195-223, (1984).
    [60] Hill. R, “Theory of mechanical properties of fibre-strengthened materials: Elastic behavior ” , J. Mech. Phys. Solids, (1964).
    [61] C. Lee, X. D Wei, J. W. Kysar, J. Hone, “ Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science Vol.321, No.5887, pp.385-388, (2008).
    [62] Reddy, S. Rajendran, K. M. Liew, “Equilibrium configuration and continuum elastic properties of finite sized graphene”, Nanotechnology Vol.17, pp.864, (2006).
    [63] H. Hiura, T.W. Ebbesen, K. Tanigaki and H. Takahashi,” Raman studies of carbon nanotubes “, Chemical Physics letters, Vol.202, No.6 , (1993).
    [64] D. Puglia, L. Valentini, J. M. Kenny, “Analysis of the Cure Reaction of Carbon Nanotubes/Epoxy Resin Composites Through Thermal Analysis and Raman Spectroscopy”, Journal of Applied Polymer Science, Vol.88, pp.452-458, (2003)
    [65] S. Chatterjee, J. W. Wang , W. S. Kuo , ”Mecahnical reinforcement and thermal conductivity in expanded Graohene Nnanoplates reinforced Epoxy Composites”
    [66] I. Manika and J. Maniks, ”Size effects in micro- and nanoscale indentation”, Acta Materialia, Vol.54, pp.2049-2056, (2006).
    [67] W. W. Gerberich, N. I. Tymiak, J. C. Grunlan, M. F. Horstemeyer, M. I. Baskes,” Interpretations of Indentation Size Effects”, Journal of Applied Mechanics, Vol.69, pp.433-442, (2002).
    [68] J. C. Halpin Affdl, J. L. Kardos, ” The Halpin-Tsai Equations: A Review”, Polymer Engineering Aand Science, Vol.16, No.5, (1976).
    [69] B. J. Briscoe, L. Fiori, and E. Pelillo, “Nano-indentation of polymericSurfaces”, Journal of Physics D: Applied Physics, Vol.31, p. 2395, (1998).
    [70] S. Yang, Y. W. Zhang, and K. Zeng, ”Analysis of nanoindentationcreep for polymeric materials”, Journal of Applied Physics, Vol.95, p.3655, (2004).
    [71] H. M. Pollock, D. Maugis, and M. Barquins, ”MicroindentationTech”. In Mat. Sci. & Eng, P. J. Blau and R. Lawn, (1986).
    [72] M. J. Mayo, R. W. Seigel, Y. X. Liao, and W. D. Nix, ”Nanoindentation of Nanocrystalline ZnO”, J. Mater, Vol.7, p.973, (1992).

    下載圖示 校內:2014-02-14公開
    校外:2014-02-14公開
    QR CODE