簡易檢索 / 詳目顯示

研究生: 邱彥綺
Chiu, Yen-Chi
論文名稱: 開發近紅外光奈米剪刀調降標靶基因
Development of Near-Infrared Nanoscissor for Down Regulation of Target Genes
指導教授: 謝達斌
Shieh, Dar-Bin
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 51
中文關鍵詞: 金奈米棒三股寡核苷酸多次甲基菁近紅外光剪切標靶基因
外文關鍵詞: Gold nanorod (Au NR), Triplex-forming oligonucleotides (TFOs), Cypate, DNA cleavage, Near-infrared
相關次數: 點閱:75下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 已發表之人造標靶性光激發奈米剪技術 (Artificial, Targeted, Light-Activated Nanoscissor , ATLANS) 可利用特定波長光子激發切割試劑產生自由基而剪切標靶基因。然而其激發波長 (λ=460 nm) 無法穿透深層組織,且可能造成非標靶基因非特異性傷害。本研究發展近紅外光奈米剪 (Near-Infrared, Artificial, Targeted, Light-Activated Nanoscissor, NIR-ATLANS)將激發波長改為808 nm,同時利用髮夾結構與光淬設計促進切割專一性。此NIR-ATLANS以金奈米棒 (gold nanorod, Au NR) 為核心載體以提供近紅外光區段之表面電漿共振淬火 (quench)功能及搭載終端修飾近紅外光切割試劑 多次甲基菁 (cypate) 的三股寡核苷酸 (triplex-forming oligonucleotides, TFOs)的平台。此單股核苷酸可與標靶基因形成專一性的三股結構並將原來結構上受到淬火抑制之切割分子轉為準活化態以利後續標靶切割之進行。此一設計降低了非標靶性切割機率而保護DNA免於受損。當NIR-ATLANS-標靶DNA複合結構受到近紅外光激活時,cypate能釋放自由基而切割DNA。我們在NIR-ATLANS表面合成PEG修飾(PEGylated NIR-ATLANS)而顯著提增其生物相容性。凝膠遷移實驗證實篩選出之TFO能與目標雙股DNA專一性結合。一金奈米棒則約可修飾180個TFO。共聚焦顯微鏡觀察證實PEGylated NIR-ATLANS能於處理細胞12小時後進入細胞核。而以穩定表現EGFP之細胞株為模式,給予PEGylated NIR-ATLANS並照射808 nm 雷射後,可由流式細胞儀定量分析發現細胞EGFP螢光於48小時達到最佳抑制效果。反之,控制組別 (scrambled control)細胞則沒有顯著EGFP表現量下降的現象。期望未來PEGylated NIR-ATLANS能提供癌症基因治療之一新穎方向。

    We previously developed an artificial, targeted, light-activated nanoscissor (ATLANS) for precise photonic cleavage of target gene sequence. This 1st generation ATLANS was designed to be activated by blue light (λ=460 nm) thus limited by photon penetration depth in tissues. This study aims to develop a new generation ATLANS activated by near-infrared (808 nm). The NIR-ATLANS comprised of gold nanorod (Au NR) core with a monolayer of cypate-modified triplex-forming oligonucleotides (TFOs) that recognize targeted DNA duplex. The Au NR acts as a quencher to prevent the excitation energy from off-targeting activation thus to protect the cell from non-specific DNA damage. The beacon TFOs was end-modified with cypate, an ICG (indocyanine green) analogue, to form a hairpin structure that only capable of being activated when extended away from the Au NR surface plasma quench upon recognition of the target gene sequence. After laser exposure, the NIR-ATLANS generates free radical from cypate and induced target DNA break. Modification of PEG to the surface of NIR-ATLANS (PEGylated NIR-ATLANS) significantly improved biocompatibility. The electrophoretic mobility shift assay showed selective binding of TFOs to the target EGFP sequence. We demonstrated a maximum coverage up to 180 TFOs per Au NR. Further, we discovered through confocal microscopy that PEGylated NIR-ATLNAS could shuffle to the nucleus directly in 12 hours after cellular uptake. When activated by 808 nm laser, the PEGylated NIR-ATLANS down regulate target gene EGFP that plateau at 48 hours after lasing compared to the scrambled control group. Such technology holds a great potential in the future cancer gene therapy and genetic engineering.

    Chinese abstract…………………………………………………..………….I English abstract……………………………………………………………III Acknowledgements……………………………………………………….....V Contents…………………………………………………………………….VI Table Contents……………………………………………………………VIII Figure contents………………………………………………………….IX Abbreviations………………………………………………………………..X 1. Introduction……………………………………………………………….1 1.1 Genetic engineering………………………………………………….1 1.1.1 Genetic engineering tools…………………………………………1 1.1.2 Triplex-forming oligonucleotides…………………………………2 1.1.3 Gene therapy……………………………………………………….4 1.2 Near-infrared spectroscopy and photodynamic therapy………….4 1.3 Characterization of gold nanorod nanoparticles…………………..6 1.4 Rationale………………………………………………………….…..7 2. Materials and Methods……………………………..……………………9 2.1 Selection of functional TFO to the target DNA sequence fragment.9 2.1.1 Electrophoretic mobility shift assay (EMSA) …………………….9 2.1.2 Free TFO functional assay by flow cytometry……………………9 2.2 Synthesis of materials………………………………………………10 2.2.1 Synthesis of gold nanorod………………………………………..10 2.2.2 Synthesis of cypate………………………………..………………11 2.2.3 Assembly PEGylated NIR-ATLAN...…………………………….11 2.3 Cell culture…………………………………………………………...12 2.4 MTT cytotoxicity assay…………………………………………..….13 2.5 Confocal microscopy………………………………………………...14 2.6 DNA cleavage assay…………………………………………..……...14 2.7 PEGylate NIR-ATLANS functional assay…………………………15 2.8 The selective cytotoxicity of PEGylated NIR-ATLANS assay…....15 3. Results………………………………………………………..…………...17 3.1Selection of functional TFO to the target DNA sequence fragment17 3.2 Characterization of PEGylated NIR-ATLANS……………….…...17 3.3 Assess biocompability of PEGylated NIR-ATLANS in vitro…...…18 3.4 Subcellular distribution of Au NR-TFO complex in vitro………...18 3.5 The efficiency of cypate induced DNA cleavage…………………...19 3.6 Down regulation of target gene expression by PEGylated NIR-ATLANS and 808 nm laser in vitro……………………………….19 3.7 PEGylated NIR-ATLANS had selective cytotoxicity between normal andcancer cells…………………………………………………..20 4. Discussion………………………………………………………………...21 5. Summary…………………………………………………………………27 6. References………………………………………………………………..29 7. Figures and Legends…………………………………………………...37 8. Personal Profile………………………………………………………….51

    Beal, P.A., and Dervan, P.B. (1991). Second structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251, 1360-1363.
    Beardsley, T. (2000). Gene therapy setback. Scientific American 282, 36-37.
    Becker, A., Hessenius, C., Licha, K., Ebert, B., Sukowski, U., Semmler, W., Wiedenmann, B., and Grotzinger, C. (2001). Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature biotechnology 19, 327-331.
    Bibikova, M., Beumer, K., Trautman, J.K., and Carroll, D. (2003). Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764.
    Blaese, R.M., Culver, K.W., Miller, A.D., Carter, C.S., Fleisher, T., Clerici, M., Shearer, G., Chang, L., Chiang, Y., Tolstoshev, P., et al. (1995). T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 270, 475-480.
    Boch, J. (2011). TALEs of genome targeting. Nat Biotechnol 29, 135-136.
    Boyer, J.C., Manseau, M.P., Murray, J.I., and van Veggel, F.C. (2010). Surface modification of upconverting NaYF4 nanoparticles with PEG-phosphate ligands for NIR (800 nm) biolabeling within the biological window. Langmuir 26, 1157-1164.
    Bradley, A., Evans, M., Kaufman, M.H., and Robertson, E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309, 255-256.
    Chan, P.P., and Glazer, P.M. (1997). Triplex DNA: fundamentals, advances, and potential applications for gene therapy. J Mol Med (Berl) 75, 267-282.
    Chen, C.C., Lin, Y.P., Wang, C.W., Tzeng, H.C., Wu, C.H., Chen, Y.C., Chen, C.P., Chen, L.C., and Wu, Y.C. (2006). DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 128, 3709-3715.
    Choi, W.I., Sahu, A., Kim, Y.H., and Tae, G. (2012). Photothermal cancer therapy and imaging based on gold nanorods. Ann Biomed Eng 40, 534-546.
    Cross, D., and Burmester, J.K. (2006). Gene therapy for cancer treatment: past, present and future. Clin Med Res 4, 218-227.
    Dickerson, E.B., Dreaden, E.C., Huang, X., El-Sayed, I.H., Chu, H., Pushpanketh, S., McDonald, J.F., and El-Sayed, M.A. (2008). Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett 269, 57-66.
    Dima, V.F., Vasiliu, V., and Dima, S.V. (1998). Photodynamic therapy: an update. Roum Arch Microbiol Immunol 57, 207-230.
    Duca, M., Vekhoff, P., Oussedik, K., Halby, L., and Arimondo, P.B. (2008). The triple helix: 50 years later, the outcome. Nucleic Acids Res 36, 5123-5138.
    Ekker, S.C. (2008). Zinc finger-based knockout punches for zebrafish genes. Zebrafish 5, 121-123.
    Engel, E., Schraml, R., Maisch, T., Kobuch, K., Konig, B., Szeimies, R.M., Hillenkamp, J., Baumler, W., and Vasold, R. (2008). Light-induced decomposition of indocyanine green. Investigative ophthalmology & visual science 49, 1777-1783.
    Felsenfeld, G., and Rich, A. (1957). Studies on the formation of two- and three-stranded polyribonucleotides. Biochim Biophys Acta 26, 457-468.
    Flisikowska, T., Thorey, I.S., Offner, S., Ros, F., Lifke, V., Zeitler, B., Rottmann, O., Vincent, A., Zhang, L., Jenkins, S., et al. (2011). Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6, e21045.
    Foale, R.A., and Vandenburg, M.J. (1992). Sustained-release verapamil and nifedipine in exercise-induced angina pectoris. Eur Heart J 13, 256-260.
    Frank, O., Rudolph, C., Heberlein, C., von Neuhoff, N., Schrock, E., Schambach, A., Schlegelberger, B., Fehse, B., Ostertag, W., Stocking, C., et al. (2004). Tumor cells escape suicide gene therapy by genetic and epigenetic instability. Blood 104, 3543-3549.
    Friedmann, T., and Roblin, R. (1972). Gene therapy for human genetic disease? Science 175, 949-955.
    Geurts, A.M., Cost, G.J., Freyvert, Y., Zeitler, B., Miller, J.C., Choi, V.M., Jenkins, S.S., Wood, A., Cui, X., Meng, X., et al. (2009). Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325, 433.
    Goldberg, A.D., Banaszynski, L.A., Noh, K.M., Lewis, P.W., Elsaesser, S.J., Stadler, S., Dewell, S., Law, M., Guo, X., Li, X., et al. (2010). Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140, 678-691.
    Goni, J.R., de la Cruz, X., and Orozco, M. (2004). Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Res 32, 354-360.
    Goni, J.R., Vaquerizas, J.M., Dopazo, J., and Orozco, M. (2006). Exploring the reasons for the large density of triplex-forming oligonucleotide target sequences in the human regulatory regions. BMC Genomics 7, 63.
    Hockemeyer, D., Wang, H., Kiani, S., Lai, C.S., Gao, Q., Cassady, J.P., Cost, G.J., Zhang, L., Santiago, Y., Miller, J.C., et al. (2011). Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol 29, 731-734.
    Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A., and Selvaraj, G. (2000). Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122, 747-756.
    Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S., and Zhang, B. (2011). Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 29, 699-700.
    Huang, X., El-Sayed, I.H., Qian, W., and El-Sayed, M.A. (2006). Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society 128, 2115-2120.
    Huff, T.B., Tong, L., Zhao, Y., Hansen, M.N., Cheng, J.X., and Wei, A. (2007). Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond) 2, 125-132.
    Jamieson, A.C., Miller, J.C., and Pabo, C.O. (2003). Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov 2, 361-368.
    Jana, N.R. (2005). Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1, 875-882.
    Katsumoto, Y., Fukuchi-Mizutani, M., Fukui, Y., Brugliera, F., Holton, T.A., Karan, M., Nakamura, N., Yonekura-Sakakibara, K., Togami, J., Pigeaire, A., et al. (2007). Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48, 1589-1600.
    Klohs, J., Wunder, A., and Licha, K. (2008). Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic research in cardiology 103, 144-151.
    Knauert, M.P., and Glazer, P.M. (2001). Triplex forming oligonucleotides: sequence-specific tools for gene targeting. Hum Mol Genet 10, 2243-2251.
    Kobatake, E., Onoda, K., Yanagida, Y., and Aizawa, M. (2000). Design and gene engineering synthesis of an extremely thermostable protein with biological activity. Biomacromolecules 1, 382-386.
    Kuo, W.S., Chang, C.N., Chang, Y.T., Yang, M.H., Chien, Y.H., Chen, S.J., and Yeh, C.S. (2010). Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angewandte Chemie 49, 2711-2715.
    Majumdar, A., Khorlin, A., Dyatkina, N., Lin, F.L., Powell, J., Liu, J., Fei, Z., Khripine, Y., Watanabe, K.A., George, J., et al. (1998). Targeted gene knockout mediated by triple helix forming oligonucleotides. Nature genetics 20, 212-214.
    Moan, J., Peng, Q., Sorensen, R., Iani, V., and Nesland, J.M. (1998). The biophysical foundations of photodynamic therapy. Endoscopy 30, 387-391.
    Nakashima, H., Furukawa, K., Kashimura, Y., and Torimitsu, K. (2008). Self-assembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids. Langmuir 24, 5654-5658.
    Niidome, T., Akiyama, Y., Shimoda, K., Kawano, T., Mori, T., Katayama, Y., and Niidome, Y. (2008). In vivo monitoring of intravenously injected gold nanorods using near-infrared light. Small 4, 1001-1007.
    Osakabe, K., Osakabe, Y., and Toki, S. (2010). Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci U S A 107, 12034-12039.
    Pabo, C.O., Peisach, E., and Grant, R.A. (2001). Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem 70, 313-340.
    Patil, S.D., Rhodes, D.G., and Burgess, D.J. (2005). DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J 7, E61-77.
    Popovtzer, R., Agrawal, A., Kotov, N.A., Popovtzer, A., Balter, J., Carey, T.E., and Kopelman, R. (2008). Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8, 4593-4596.
    Sander, J.D., Cade, L., Khayter, C., Reyon, D., Peterson, R.T., Joung, J.K., and Yeh, J.R. (2011). Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29, 697-698.
    Singleton, S.F., and Dervan, P.B. (1992). Influence of pH on the equilibrium association constants for oligodeoxyribonucleotide-directed triple helix formation at single DNA sites. Biochemistry 31, 10995-11003.
    Stewart, C.N., Jr. (2006). Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24, 155-162.
    Tesson, L., Usal, C., Menoret, S., Leung, E., Niles, B.J., Remy, S., Santiago, Y., Vincent, A.I., Meng, X., Zhang, L., et al. (2011). Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29, 695-696.
    Tsai, T.L., Shieh, D.B., Yeh, C.S., Tzeng, Y., Htet, K., Chuang, K.S., Hwu, J.R., and Su, W.C. (2010). The down regulation of target genes by photo activated DNA nanoscissors. Biomaterials 31, 6545-6554.
    Vasquez, K.M., Narayanan, L., and Glazer, P.M. (2000). Specific mutations induced by triplex-forming oligonucleotides in mice. Science 290, 530-533.
    Vinocur, B., and Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16, 123-132.
    von Maltzahn, G., Centrone, A., Park, J.H., Ramanathan, R., Sailor, M.J., Hatton, T.A., and Bhatia, S.N. (2009). SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating. Adv Mater 21, 3175-3180.
    von Maltzahn, G., Park, J.-H., Lin, K.Y., Singh, N., Schwöppe, C., Mesters, R., Berdel, W.E., Ruoslahti, E., Sailor, M.J., and Bhatia, S.N. (2011). Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 10, 545-552.
    Wang, L., Liu, Y., Li, W., Jiang, X., Ji, Y., Wu, X., Xu, L., Qiu, Y., Zhao, K., Wei, T., et al. (2011). Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. Nano letters 11, 772-780.
    Wood, A.J., Lo, T.W., Zeitler, B., Pickle, C.S., Ralston, E.J., Lee, A.H., Amora, R., Miller, J.C., Leung, E., Meng, X., et al. (2011). Targeted genome editing across species using ZFNs and TALENs. Science 333, 307.
    Wu, Q., Gaddis, S.S., MacLeod, M.C., Walborg, E.F., Thames, H.D., DiGiovanni, J., and Vasquez, K.M. (2007). High-affinity triplex-forming oligonucleotide target sequences in mammalian genomes. Mol Carcinog 46, 15-23.
    Xu, L., Liu, Y., Chen, Z., Li, W., Liu, Y., Wang, L., Liu, Y., Wu, X., Ji, Y., Zhao, Y., et al. (2012). Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. Nano letters 12, 2003-2012.
    Ye, Y., Bloch, S., and Achilefu, S. (2004). Polyvalent carbocyanine molecular beacons for molecular recognitions. J Am Chem Soc 126, 7740-7741.
    Ye, Y., Li, W.P., Anderson, C.J., Kao, J., Nikiforovich, G.V., and Achilefu, S. (2003). Synthesis and characterization of a macrocyclic near-infrared optical scaffold. J Am Chem Soc 125, 7766-7767.
    Zhang, F., Maeder, M.L., Unger-Wallace, E., Hoshaw, J.P., Reyon, D., Christian, M., Li, X., Pierick, C.J., Dobbs, D., Peterson, T., et al. (2010). High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci U S A 107, 12028-12033.

    無法下載圖示 校內:2018-08-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE