簡易檢索 / 詳目顯示

研究生: 李其忠
Lee, Chi-Chung
論文名稱: 自充填混凝土梁柱複合構件受火害與修復後之高溫行為研究
Self-Compacting Concrete Beam-Column Sub-assemblage Subjected to Elevated Temperature Test and Further High Temperature Test after Repair
指導教授: 方一匡
Fang, I-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 255
中文關鍵詞: 火害梁柱聚丙烯纖維自充填混凝土修復
外文關鍵詞: fire, beam-column, polypropylene fibres, self-compacting concrete, repair
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般鋼筋混凝土建築物於火害後若經過適當的修復或補強仍可繼續使用,然而目前對於受火害結構物修復或補強後再受高溫影響之研究則很少見。本研究旨在探討火災時火場中有遭受噴水與未受到水噴灑和再水化對普通及自充填混凝土材料殘餘強度之影響,及進行鋼筋混凝土梁柱複合構件與梁柱接頭在高溫中、後的行為研究。試驗研究方面,共測試九根全尺寸之試體來模擬國內一般住宅建築物受火害之作用。並以水泥砂漿、自充填混凝土及聚丙烯纖維自充填混凝土修復六根受火害後的鋼筋混凝土柱,修復後施以軸壓力為0.45fc’Ag,並依據CNS 12514進行耐火試驗,探討修復柱再受高溫之影響。
    本研究結果顯示如下:
    1. 混凝土受高溫作用後,依材料性能折損之大小程度,依序為:彈性模數、抗張強度、抗壓強度。
    2. 混凝土在火害後之殘餘抗壓強度除與所受溫度密切相關外,亦與殘餘抗壓強度回復時間有關。強制冷卻的殘餘抗壓強度隨回復時間增加變大,自然冷卻的殘餘抗壓強度隨回復時間增加降低,進行火害結構安全評估應注意。
    3. 梁柱接頭受火害後未發生破壞。試體的最大垂直及水平位移均發生在冷卻階段。試體因同時受高溫及加載作用,梁之勁度有明顯減少現象,在殘餘強度測試中,於鋼筋降伏前,普通混凝土與自充填混凝土試體在加載點之變位約為常溫試體之2倍。
    4. 修復柱均具有4小時防火時效,但是自充填混凝土修復柱,受高溫時發生混凝土爆裂,其深度可見箍筋,影響柱的耐火性能。聚丙烯纖維自充填混凝土修復柱在高溫中無明顯混凝土爆裂。
    5. 由火害後修復柱之殘餘強度試驗結果顯示,柱的殘餘強度主要與核心混凝土強度有關。

    Most fire-damaged reinforced concrete buildings can be repaired and reused even after severe fire. This research is focused on the behavior of the reinforced concrete beam-column sub-assemblages during and after the elevated temperature environment. Nine full-sized beam-column sub-assemblages were tested to simulate the effect of fire on the residential buildings. The experimental results on repairing fire-damage concrete columns during and after the elevated temperature environment are studied. Six fire damaged columns were repaired with cement mortar, self-compacting concrete and self-compacting concrete mixed with polypropylene fibres, respectively. Moreover, the effects of cooling regimes and post-fire-air-curing on mechanical properties of self-compacting concrete are studied. Test results revealed that the residual compressive strength of concrete after fire depend not only on the temperatures subjected, but also on the revert duration of the residual compressive strength. The beam-column joints were not failed during the heating stage. The maximum horizontal and vertical displacement occurred in the cooling stage. Under the combined effects of elevated temperature and applied load, the stiffness of beam decreased significantly. The vertical displacement at load point of NC and SCC specimens, prior to the yielding of beam reinforcement in residual strength test, was approximately 2 times those tested under ambient condition. The repaired columns, after being further subjected to the CNS 12514 standard fire exposure, had over 4 hours fire resistance rating.

    摘要Ⅰ 誌謝Ⅷ 目錄Ⅸ 表目錄ⅩⅤ 圖目錄ⅩⅦ 符號 ⅩⅩⅢ 第一章 緒論1 1-1研究背景1 1-2研究目的2 1-3研究範圍3 第二章 文獻回顧5 2-1混凝土及鋼筋之熱學性質5 2-1-1混凝土的熱傳導係數5 2-1-2混凝土的比熱6 2-1-3混凝土的熱膨脹係數8 2-1-4混凝土的密度10 2-1-5鋼筋的熱學性質10 2-2混凝土高溫下之爆裂行為13 2-3混凝土與鋼筋火害中後之力學性質13 2-3-1混凝土抗壓強度13 2-3-2混凝土抗張強度16 2-3-3混凝土應力應變曲線18 2-3-4鋼筋降伏強度20 2-4自充填混凝土火害中後之行為23 2-5火害中後鋼筋混凝土構件力學行為研究24 2-6受火害鋼筋混凝土構件修復補強研究27 第三章自充填混凝土火害後之力學性能研究29 3-1前言29 3-2實驗規劃與實驗方法31 3-2-1試體規劃與製作31 3-2-2實驗裝置32 3-2-3實驗方法32 3-3實驗結果與討論36 3-3-1試體溫度36 3-3-2試體外觀變化及爆裂37 3-3-3試體重量變化40 3-3-4抗壓破壞模式46 3-3-5抗壓強度48 3-3-6峰值應變57 3-3-7彈性模數63 3-3-8混凝土應力-應變關係67 3-3-9劈裂強度70 3-3-10泊松比76 3-4小結80 第四章受火害鋼筋混凝土構件之溫度數值模擬83 4-1熱傳導方程式之簡介83 4-1-1傅立葉定律(Fourier's law)84 4-1-2熱傳導方程式的建立84 4-1-3邊界與初始條件85 4-1-4鋼筋混凝土構件溫度分析之邊界條件87 4-2 ANSYS數值模擬88 4-3混凝土熱學參數89 4-4梁柱複合構件之電腦模型建立90 4-5數值模擬之驗證96 4-6小結105 第五章鋼筋混凝土梁柱接頭耐火試驗109 5-1前言109 5-2實驗規劃與實驗方法109 5-2-1試體設計與製作109 5-2-2實驗裝置114 5-2-3實驗方法114 5-3實驗結果與討論118 5-3-1常溫試驗結果118 5-3-2高溫中試驗結果118 5-3-2-1耐火爐溫度及爐壓118 5-3-2-2高溫試驗觀察120 5-3-2-3試體內部溫度125 5-3-2-4試體變位140 5-3-2-5試體之耐火性能153 5-3-3高溫後試驗結果154 5-4梁柱複合構件耐火試驗162 5-4-1試體設計與製作162 5-4-2試驗過程166 5-4-3試驗結果與討論167 5-5小結176 第六章受火害鋼筋混凝土柱修復之耐火試驗179 6-1前言179 6-2實驗規劃與實驗方法180 6-2-1試體設計180 6-2-2試體修復材料與施作184 6-2-3實驗裝置187 6-2-4加溫與加載方法194 6-3實驗結果與討論196 6-3-1耐火爐溫度及爐壓198 6-3-2高溫試驗觀察198 6-3-3試體內部溫度205 6-3-4試體變位215 6-3-5試體之耐火性能221 6-3-6殘餘強度試驗224 6-4小結230 第七章結論與建議233 7-1結論233 7-2建議237 參考文獻239

    Arpaci, V. S., “Conduction Heat Transfer,” Addison-Wesley, (1966).
    ASCE, “Structural fire protection,” Manual No. 78, ASCE Committee on Fire Protection, Structural Division, American Society of Civil Engineers, New York, (1992).
    Anderberg, Y., ”Spalling phenomena of HPC and OC,” NIST Workshop on Fire Performance of High Strength Concrete, February 13-14, 1997 in Gaithersburg.
    Anderberg, Y. “Assessment of fire-damaged concrete structures and the corresponding repair measures,” Concrete Repair, Rehabilitation and Retrofitting Ⅱ-Alexander et al. (eds), pp.631-636 (2009).
    ASTM C469, “Standard Tests Methods for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,”ASTM, (2002).
    ASTM E119, “Standard Tests Methods for Fire Tests of Buildings Construction and Materials,” ASTM, (2012).
    ACI Committee 546, “Concrete repair guide (ACI 546R-04),” American Concrete Institute, Michigan, 53 pp. (2004).
    ACI Committee 318, “Building code requirements for structural concrete (ACI 318-08) and commentary (ACI 318R-08),” American Concrete Institute, Michigan, 465 pp. (2008).
    Anagnostopoulos, N., Sideris, K. K., and Georgiadis, A., “ Mechanical characteristics of self-compacting concretes with different filler materials, exposed to elevated temperature,” Materials and Structures, Vol. 42, pp.1393-1405 (2009).
    Ahmed, A. and Kodur, V. K. R., “The experimental behavior of FRP-strengthened RC beams subjected to design fire exposure,” Engineering Structures, Vol. 33, pp.2201-2211 (2011).
    Brown, T. D., and Javaid, M. Y., “The thermal conductivity of fresh concrete,” Materials and structures, Vol. 3, pp.411-416 (1970).
    Bazant, Z. P., and Chern, J. C., “Stress-induced thermal and shrinkage stains in concrete,” Journal of Engineering (ASCE), Vol. 113, pp.1493-1511 (1987).
    Balendran, R. V., Nadeem, A., Maqsood, T., and Leung, H. Y., “Flexural and split cylinder strengths of HSC at elevated temperatures,” Fire Technology, Vol. 39, pp.47-610 (2003).
    Bingöl, A. F., and Gül, R., “Effect of elevated temperatures and cooling regimes on normal strength concretes,” Fire and Materials, Vol. 33, pp.79-88 (2009a).
    Bingöl, A. F., and Gül, R., “Residual bond strength between steel bars and concrete after elevated temperatures,” Fire Safety Journal, Vol. 44, pp.741-748 (2009b).
    Bangi, M. R. and Horiguchi, T., “Pore pressure development in hybrid fibre - reinforced high strength concrete at elevated temperatures, ” Cement and Concrete Research, Vol. 41, pp. 1150-1156 (2011).
    Bamonte, P., and Gambarova, P. G., “A study on the mechanical properties of self-compacting concrete at high temperature and after cooling,” Materials and Structures, Vol. 45, pp.1375-1387 (2012).
    Bahr, O., Schaumann, P., Bollen, B., and Bracke, J., “Young’s modulus and Poisson’s ratio of concrete at high temperatures: Experimental investigations,” Materials and Design, Vol. 45, pp.421-429 (2013).
    Cruz, C.R., Gillen, M., “Thermal expansion of portland cement paste, mortar and concrete at high temperatures,” Fire and Materials, Vol. 4, pp.66-709 (1980).
    CEB-FIP, “Design of Concrete Structure for Fire Resistance,” Bulletin D’Information, N 145, (1982).
    CEB-FIP, “Fire design of concrete structures-structural behaviour and assessment,” fib Bulletin 46, (2008).
    Chowdhury, E. U., Bisby, L. A., Green, M. F. and Kodur, V. K. R., “Residual behavior of fire-exposed reinforced concrete beam prestrengthened in flexure with fiber-reinforced polymer sheets,” Journal of Composites for Construction, ASCE, Vol. 12, No. 1, pp. 61-68 (2008).
    Chen, Y. H., Chang, Y. F., Yao, G. C., Sheu, M. S., “Experimental research on post-fire behavior of reinforced concrete columns,” Fire Safety Journal, Vol. 44, pp.741-748 (2009).
    Diederichs, U., Jumppanen, U.M. and Schneider, U., “High Temperature Properties and Spalling Behavior of High Strength Concrete,” Proceedings of Fourth Weimar Workshop on High Performance Concrete, HAB Weimar, Germany, pp.219-235 (1995).
    Dwaikat, M. B., and Kodur,V. K. R., “Response of restrained concrete beams under design fire exposure, ”Journal of Structural Engineering, ASCE, Vol. 135, No. 11, pp. 1408-1417 (2009).
    Edwards, W. T., and Gamble, W.L., “Strength of Grade 60 Reinforcing Bars after Exposure to Fire Temperatures”, Concrete International, pp. 17-19 (1986).
    Ellingwood, B., and Lin, T.D. , “ Flexure and shear behavior of concrete beams during fires,” Journal of Structural Engineering, ASCE, Vol. 117, No. 2, pp. 440-458 (1991).
    Eurocode 2, 1992-1-2: Design of concrete structures-Part1-2: General rules – Structural fire design (1995).
    Eurocode 2, 1992-1-2: Design of concrete structures-Part1-2: General rules – Structural fire design (2004).
    Eurocode 4, 1994-1-2: Design of composite steel and concrete structures-Part1-2: General rules – Structural fire design (2005).
    Felicetti, R., and Gambarova, P. G., “Effect of high temperature on the residual compressive strength of high-strength siliceous concretes,” ACI Material Journal, Vol. 95, pp.395-406 (1998).
    Fares, H., Noumowe, A., and Remond, S.,“Self-consolidating concrete subjected to high temperature Mechanical and physicochemical properties,” Cement and Concrete Research, Vol. 39, pp.1230-1238 (2009).
    Gencel, O., “Effect of elevated temperatures on mechanical properties of high-strength concrete containing varying proportions of hematite,” Fire and Materials, Vol. 36, pp.217-230 (2012).
    Harada, T., Takeda, J., Yamane, S., and Furumura, F., “Strength, elasticity and thermal properties of concrete subject to elevated temperature” ACI Publication SP-34, Concrete for nuclear reactors,. American Concrete Institute, Michigan, pp.377-406 (1972).
    Harmathy, T. Z., “Concrete at high temperatures: material properties and mathematical models,” Longman Group Limited, England, (1996).
    Hertz, K. D., “Limits of spalling of fire-exposed concrete,” Fire Safety Journal, Vol. 38, pp.103-116 (2003).
    Hertz, K. D., “Concrete strength for fire safety design,” Magazine of Concrete Research, Vol. 57, No. 8, pp.445-453 (2005).
    Husem, M., “The effect of high temperature on compressive and flexural strengths of ordinary and high-performance concrete,” Fire Safety Journal, Vol. 41, pp.155-163 (2006).
    Haddad, R. H., Shannag, M. J. and Hamad, R. J., “Repair of heat-damaged reinforced concrete T-beams using FRC jackets,” Magazine of Concrete Research, Vol. 59, No. 3, pp.223-231 (2007).
    Haddad, R. H., AL-Mekhlafy, N. and Ashteyat, A. M., “Repair of heat-damaged reinforced concrete slabs using fibrous composite materials,” Construction and Building Materials, Vol. 25, pp.1213-1221 (2011).
    ISO 834, “Fire resistance tests – elements of building construction,” International Organization for Standardization (1999).
    Incropera, F. P., and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer,” 5th Edition,John Wiley & Sons, Inc., (2002).
    Jau, W. C., and Huang, K. L., “A study of reinforced concrete corner columns after fire,” Cement & Concrete Composites, Vol. 30, pp. 622-638 (2008).
    Jansson, R., and Boström, L., “The influence of pressure in the pore system on fire spalling of concrete,” Fire Technology, Vol. 46, pp.217-230 (2010).
    Jansson, R., and Boström, L., “Factors influencing fire spalling of self compacting concrete,” Materials and Structures, Vol. 46, pp.1683-1694 (2013).
    Khoury, G. A., Grainger, B. N. and Sullivan, P. J. E., “Strain of concrete during first heating to 600℃ under load,” Magazine of Concrete Research, Vol. 37, No. 133, pp.195-215 (1985b).
    Khoury, G. A., Grainger, B. N. and Sullivan, P. J. E., “Strain of concrete during first cooling from 600℃ under load,” Magazine of Concrete Research, Vol. 38, No. 134, pp.3-12 (1986).
    Khoury, G. A., and Anderberg, Y., “Concrete spalling review,” Report submitted to the Swedish National Road Administration, (2000).
    Khoury, G. A., Majorana, C. E., Pesavento, F., and Schrefler, B. A., “Modelling of heated concrete,” Magazine of Concrete Research, Vol. 54, pp.77-101 (2002).
    Khennane, A., and Baker, G., “Uniaxial model for concrete under variable temperature and stress,” Journal of Engineering Mechanics (ASCE), Vol. 119, pp. 1507-1525 (1993).
    Kodur, V. K. R., and Sultan, M. A., “Effect of temperature on thermal properties of high-strength concrete,” Journal of Materials in Civil Engineering(ASCE), Vol. 15, pp. 101-107 (2003).
    Kodur, V. K. R., and McGrath, R., “Fire endurance of high strength concrete columns,” Fire Technology, Vol. 39, pp. 73-87 (2003).
    Kodur, V. K. R., Wang, T. C., and Cheng, F. P., “Predicting the fire resistance behavior of high strength concrete columns,” Cement and Concrete Composites, Vol. 26, pp.141-153 (2004).
    Kodur, V. K. R., and Phan L., “Critical factors governing the fire performance of high strength concrete systems,” Fire Safety Journal, Vol. 42, pp.482-488 (2007).
    Kodur, V. K. R., and Khaliq, K., “Effect of temperature on thermal properties of different types of high-strength concrete,” Journal of Materials in Civil Engineering (ASCE), Vol. 23, No. 6, pp.793-801 (2011).
    Kodur, V. K. R., Garlock, M., and Iwankiw, N., “Structures in fire: state-of-the-art, research and training needs,” Fire Technology, Vol.48, pp.825-839 (2012).
    Kosmas, K. S., “Mechanical characteristics of self-consolidating concretes exposed to elevated temperatures,” Journal of Materials in Civil Engineering( ASCE), Vol. 19, pp. 648-654 (2007).
    Karahan, O., “Residual compressive strength of fire-damaged mortar after post-fire-air-curing,” Fire and Materials, Vol. 35, pp.561-567 (2011).
    Khaliq, W., and Kodur, V., “Thermal and mechanical properties of fiber reinforced high performance self-consolidating concrete at elevated temperatures,” Cement and Concrete Research, Vol. 41, pp.1112-1122 (2011a).
    Khaliq W., and Kodur V. K. R., “Effect of high temperature on tensile strength of different type of high-strength concretes,” ACI Material Journal, Vol. 108, pp.394-402 (2011b).
    Lin, T. D. , Gustaferro, A. H. , and Abrams, M. S. , “ Fire endurance of continuous reinforced concrete beams,” PCA Research and Development Bulletin RD072.01B, Chicago, U.S.A., pp. 1-13 (1981).
    Lie, T. T., Lin, T. D., Allen, D. E., and Abrams, M. S., “Fire resistance of reinforced concrete columns,” National Research Council Canada, Division of Building Research, NRCC 23065, Ottawa, Canada, pp. 1-32 (1984).
    Lie, T. T., Rowe, T. J., and Lin, T. D., “Residual strength of fire-exposed reinforced concrete columns,” ACI Publication SP-92, pp. 153-174 (1986).
    Lie, T. T., “Fire resistance of reinforced concrete columns : a parametric study,” Journal of Fire Protection Engineering, Vol. 1, pp.121-130 (1989).
    Lie, T. T., and Celikkol, B., “Method to calculate the fire resistance of circular reinforced concrete columns,” ACI Material Journal, Vol. 88, pp.84-91 (1991).
    Lin, C. H., Chen, S. T., and Hwang, T. L., “Residual strength of reinforced concrete columns exposed to fire,” Journal of the Chinese Institute of Engineers, Vol. 12, No. 5, pp. 557-566 (1989).
    Lin, C. H., and Tsai, C. S., “Deterioration of strength and stiffness of reinforced concrete columns after fire,” Journal of the Chinese Institute of Engineers, Vol. 13, No. 3, pp. 273-283 (1990).
    Lin, C. H., Chen, S. T., and Yang, C. A., “Repair of fire-damaged reinforced concrete columns,” ACI Structural Journal, Vol. 92, No. 4, pp. 406-411 (1995).
    Lin, W. M., Lin, T. D., and Powers-Couche, L. P., “Microstructures of Fire-Damaged concrete,” ACI Material Journal, Vol. 93, pp.199-205 (1996).
    Luoa, X., Sun, W., and Chan, S. Y. N., “Effect of heating and cooling regimes on residual strength and microstructure of normal strength and high-performance concrete,” Cement and Concrete Research, Vol. 30, pp.379-383 (2000).
    Li, L., and Purkiss, J. R., “Stress-strain constitutive equations of concrete material at elevated temperatures,” Fire Safety Journal, Vol. 40, pp.669-686 (2005).
    Ling, T. C., Poon, C. S., and Kou, S. C., “Influence of recycled glass content and curing conditions on the properties of self-compacting concrete after exposure to elevated temperatures,” Cement and Concrete Composites, Vol. 34, pp.265-272 (2012).
    Mohamedbhai, G. T. G., “Effect of exposure time and rates of heating and cooling on residual strength of heated concrete,” Magazine of Concrete Research, Vol. 38, pp.151-158 (1986).
    Mendes, A., Sanjayan, J. G., and Collins, F., “Effect of slag and cooling method on the progressive deterioration of concretes after exposure to elevated temperatures as in a fire event,” Materials and Structures, Vol. 44, pp.709-718 (2011).
    Nassif, A. Y., Rigden, S., and Burley, E., “The effect of rapid cooling by water quenching on the stiffness properties of fire-damaged concretes,” Magazine of Concrete Research, Vol. 51, pp.255-261 (1999).
    Nassif, A. Y., “Postfiring stress-strain hysteresis of concrete subject to various heating and cooling regimes,” Fire and Materials, Vol. 26, pp.103-109 (2002).
    Nassif, A. Y., “Postfire full stress-strain response of fire-damaged concretes,” Fire and Materials, Vol. 30, pp.323-332 (2006).
    Noumowe, A., Carre, H., Daoud, A., and Toutanji, H., “High-strength self-compacting concrete exposed to fire test,” Journal of Materials in Civil Engineering(ASCE), Vol. 18, pp.754-758 (2006).
    Papayianni, J., and Valiasis, T., “Residual mechanical properties of heated concrete incorporating different pozzolanic materials,” Materials and Structures, Vol. 24, pp.115-121 (1991).
    Phan, L. T., “Fire performance of high-strength concrete: A report of the state-of-the-art, National Institute of Standards and Technology, Gaithersburg, Md, USA, (1996).
    Persson, B., “Self-compacting concrete at fire temperatures,” Report, TVMB-3110, Lund Institute of Technology, Lund University (2003).
    Persson, B., “Fire resistance of self-compacting concrete, SCC,” Materials and Sturctures, Vol. 37, pp. 575-584 (2004).
    Reinhardt, H. W., and Stegmaier, M., “Self-consolidating concrete in fire,” ACI Materials Journal, Vol. 103, pp.130-135 (2006).
    RILEM Technical Committee, “Final report RILEM TC 205-DSC: durability of self-compacting concrete,” Materials and Structures, Vol.41, pp.225-233 (2008).
    Stecich, J. P., Hanson, J. M., and Rice, P. F., “Bending and Straightening of Grade 60 Reinforcing Bars,” Concrete International, Vol.6, No.8, pp.14-23 (1984).
    Siders, K. K. and Manita, P., “Residual mechanical characteristics and spalling resistance of fiber reinforced self-compacting concretes exposed to elevated temperatures,” Construction and Building Materials, Vol. 41, pp.296-302 (2013).
    The Concrete Society, “Assessment and Repair of Fire Damaged Concrete Structures and Repair by Gunite,” Report of a Concrete Society Working Party, London, 28 pp. (1978).
    Tovey, A. K., “Assessment and Repair of Fire Damaged Concrete Structures-an Update” ACI Publication SP-92, Evaluation and Repair of Fire Damaged to Concrete, Edited by Harmathy, T. Z. (1986).
    Tao, J., Yuan Y., and Taerwe L., “Compressive strength of self- Compacting concrete during high-temperature exposure,” Journal of Materials in Civil Engineering( ASCE), Vol. 22, pp. 1005-1011 (2010).
    Williams, B., Kodur, V. K. R., Green, M. F. and Bisby, L. A., “Fire endurance of fiber-reinforced polymer strengthened concrete T-beams,” ACI Structural Journal, Vol. 105, No. 1, pp.60-67 (2008).
    Xiao, J., and König, G., “Study on concrete at high temperature in China—an overview,” Fire Safety Journal, Vol. 39, pp. 89-103 (2004).
    Xu, Y. Y., and Wu, B., “Fire resistance of reinforced concrete columns with L-,T-, shaped cross sections,” Fire Safety Journal, Vol. 44 , pp. 869-880 (2009).
    Ye, G., Liu, X., Schutter, G. De, Taerwe, L. and Vandevelde, P., “Phase distribution and microstructural changes of self-compacting cement paste at elevated temperature,” Cement and Concrete Research, Vol. 37, pp.978-987 (2007).
    Yaqub, M., Bailey, C. G. and Nedwell, P., “Axial capacity of post-heated square columns wrapped with FRP composites,” Cement and Concrete Composites, Vol. 33, pp.694-701 (2011).
    Yaqub, M. and Bailey, C. G., “Repair of fire damaged circular reinforced concrete columns with FRP composites,” Construction and Building Materials, Vol. 25, pp.359-370 (2011).
    Zoldners, N.G., “Thermal properties of concrete under sustained elevated temperatures,” Temperature and Concrete, Special Publication 25, American Concrete Institute, Detroit, Michigan (USA); pp.1-31 (1971).
    CNS 3801,「混凝土圓柱試體分裂抗張強度試驗法」,中華民國國家標準,經濟部標準檢驗局,(1985)。
    CNS1010,「水硬性水泥墁料抗壓強度檢驗法」,中華民國國家標準,經濟部標準檢驗局,(1993)。
    CNS 12514,「建築物構造部分耐火試驗法」,中華民國國家標準,經濟部標準檢驗局,(2010).
    建築技術規則,營建雜誌社編印,第51-64頁 (2010)。
    王天志,「加聚丙烯纖維之高性能混凝土在高溫後之強度恢復」,碩士論文,國立交通大學土木工程研究所,新竹 (1997)。
    王天志,「高性能混凝土柱耐火性能之研究」,博士論文,國立交通大學土木工程研究所,新竹 (2003)。
    林英俊、陳舜田、林慶榮,「火害後鋼筋混凝土梁之剪力強度」,國家科學委員會專題研究計畫報告,NSC78-0410-E011-13,台北 (1990)。
    林英俊、陳舜田、劉靖國,「高強度混凝土梁火害後撓曲行為之研究」,國家科學委員會專題研究計畫報告,NSC81-0410-E011-09,台北 (1992)。
    林慶元,「鋼筋混凝土結構梁貼片補強火害後之耐火性能研究」,內政部建築研究所委託研究報告,臺北 (2003)。
    周逢霖、郭詩毅、涂耀賢、林慶元,「鋼筋混凝土樑鋼板貼片補強後再受溫之性能研究」,建築學報,第63期,第115-129頁(2008)。
    高金盛、陳舜田,「火害後鋼筋混凝土梁強度與勁度之衰減」,中國土木水利工程學刊,第八卷,第三期,第371-386頁(1994)。
    張雲妃、陳義宏、許茂雄、葉孟東,「火害後鋼筋混凝土柱之雙向撓曲試驗研究」,中國土木水利工程學刊,第十八卷,第二期,第209-217頁 (2006)。
    張雲妃,「火害後雙軸彎曲鋼筋混凝土柱之試驗與分析」,博士論文,國立成功大學建築研究所,臺南 (2006)。
    張朝輝, Ansys 熱分析教程與實例解析,中國鐵道出版社,北京,2007。
    許茂雄、鄭復平,「鋼筋混凝土梁柱組合體火害行為研究」,內政部建築研究所專題研究計劃成果報告,台北 (2003)。
    許崇堯、林英俊、陳舜田,「火害後構件內鋼筋之局部握裹衰退行為」,中國土木水利工程學刊,第二卷,第四期,第357-368頁(1990)。
    郭進軍,「高溫后新老混凝土粘結的力學性能研究」,博士論文,大連理工大學,大連 (2003)。
    陳舜田、何象鏞,「鋼筋混凝土梁火害後力學行為之研究」,行政院國家科學委員會專題研究計畫成果報告,台北 (1989)。
    陳舜田,「壓力作用下混凝土材料火害後之力學行為」,行政院國家科學委員會專題研究計畫成果報告,臺北 (1990)。
    陳舜田,「火害後鋼筋混凝土柱之補強研究」,行政院國家科學委員會專題研究計畫成果報告,臺北 (1990)。
    陳舜田、林英俊、楊旻森,「火害後鋼筋混凝土桿件之扭力行為」,行政院國家科學委員會專題研究計畫成果報告,臺北(1995)。
    傅宇方,黃玉龍,潘智生,唐春安,「高溫條件下混凝土爆裂機理研究進展」,建築材料學報,第9卷,第3期,第323-329頁 (2006)。
    楊旻森,「火害後鋼筋混凝土桿件之扭力行為」,博士論文,國立台灣科技大學營建工程技術研究所,臺北(1996)。
    楊旻森、陳舜田、林英俊,「火害後混凝土之殘留應變」,中國土木水利工程學刊,第九卷,第二期,第327-333頁(1997)。
    趙文成,「鋼筋混凝土柱件火害後修補技術之研究」,內政部建築研究所專題研究計劃成果報告,臺北 (2000)。

    無法下載圖示 校內:2019-09-05公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE