| 研究生: |
張文銜 Chang, Wen-Hsien |
|---|---|
| 論文名稱: |
建立超音波量測系統評估骨質密度 Implementation of an Ultrasound Measurement System for Assessment of Bone Density |
| 指導教授: |
陳天送
Chen, Tainsong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 功率因素校正 、保護器 、波速 、波衰減 |
| 外文關鍵詞: | PFC, protector, SOS, BUA |
| 相關次數: | 點閱:125 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今超音波量測在醫學應用上已相當廣泛,除了其具有非侵入式的優點,更重要的是它不會產生輻射危險,且成本較低。而骨質疏鬆症及其併發症會嚴重的影響病患生活品質及浪費龐大的社會醫療資源,故近來也有相當多的研究投入在超音波骨質密度評估,所以本研究將建立一套自製可以使用穿透式以及反射式的超音波發射接收系統應用在骨質密度的評估。
本量測系統的設計以具功率因素校正(PFC)功能之高壓電源供應器提供超音波發射器驅動超音波探頭高穿透力的可調式穩定高壓,並且在接收器使用高增益、高頻寬之放大器接收超音波探頭微弱訊號。透過超音波接收器的前端保護設計,本研究設計的電路可以直接接收驅動超音波探頭的高壓脈衝後的微弱訊號,並且將其放大。而系統核心使用了FPGA簡化電路設計並且控制系統周邊電路的時脈。本量測系統除了可以類比輸出外,在電腦端則以LabVIEW設計了人機介面,可以即時的接收超音波訊號。
目前已完成超音波穿透式以及超音波反射式兩種量測模式的建立,並且利用此系統可以量測假體的寬度、波速(SOS)以及波衰減(BUA)等超音波參數,在壓克力假體的測試中量測值與實際值只有微小的誤差,證明本系統在未來量測應用上的可行性。
Ultrasound measurement technique has been widely used in medicine because of non-radiation; most importantly, it`s non-invasion, safe, and inexpensive. Osteoporosis and its complications seriously affect patients’ quality of life and cause a huge waste of social health care resources. For reasons outlined above, there has been considerable research into the ultrasound assessment of bone density in recent years. The objective of this study is to develop an ultrasound pulser-receiver system with transmission mode and reflection mode used on bone density estimation.
The measurement system includes a high-voltage power supply with PFC function which provides adjustable stable high-voltage and high- penetration to pulse generator drive ultrasound probe. The receiver can receive slightly signal from ultrasound probe by using high gain, high bandwidth operational amplifier. Through the design of protector, receiver is able to connect directly to the output of pulse generator and receive echo signal after the high-voltage pulse. The system core uses FPGA technique to miniaturize electronic systems and control the clock of peripheral circuit. This system provides analog output, and on the computer side, a human-computer interface is designed by using LabVIEW to receive ultrasound signal in time.
The transmission mode and reflection mode of this instrument have been accomplished. This system can measure the parameters such as thickness of phantom, SOS and BUA. In phantom validation studies, the error is less than 3.15%. The results prove the feasibility of this system.
[1] J. Mallatt, E. N. Marieb, P.B.Wilhelm, "Human Anatomy," San Francisco Benjamin Cummings, pp. 129, 2003.
[2] Pfizer Australia Health Report, “Osteoporosis And Your Bones,” 2006.
[3] C. Christiansen, "Osteoporosis: Diagnosis and Management Today and Tomorrow," Bone, vol. 17, pp. 513-516, 1995.
[4] P. Moilanen, V. Kilappa, P. H. Nicholson, J. Timonen, and S. Cheng, "Thickness Sensitivity of Ultrasound Velocity in Long Bone Phantoms," Ultrasound Med Biol, vol. 30, pp. 1517-21, 2004.
[5] C. M. Langton, A. V. Ali, C. M. Riggs, G. P. Evans, and W. Bonfield, "A Contact Method for the Assessment of Ultrasonic Velocity and Broadband Attenuation in Cortical and Cancellous Bone," Clin Phys Physiol Meas, vol. 11, pp. 243-9, 1990.
[6] G. Brandenburger, L. Avioii, C. C. III, R. Heaney, R. Poss, G. Pratt, and R. Recker, "In-Vivo Measurement of Osteoporotic Bone Fragility with Apparent Velocity of Ultrasound," IEEE Ultrasonic Symposium, pp. 1023-1027, 1989.
[7] M. J. Grimm and J. L. Williams, "Assessment of Bone Quantity and 'Quality' by Ultrasound Attenuation and Velocity in the Heel," Clinical Biomechanics, vol. 12, pp. 281-285, 1997.
[8] J. Toyras, M. T. Nieminen, H. Kroger, and J. S. Jurvelin, "Bone Mineral Density, Ultrasound Velocity, and Broadband Attenuation Predict Mechanical Predict Mechanical Properties of Trabecular Bone Differently," Bone, vol. 31, pp. 503-507, 2002.
[9] L. Serpe and J. Y. Rho, "The Nonlinear Transition Period of Broadband Ultrasound Attenuation as Bone Density Varies," J Biomech, vol. 29, pp. 963-6, 1996.
[10] P. Augat, H. Reeb, and L. E. Claes, "Prediction of Fracture Load at Different Skeletal Sites by Geometric Properties of the Cortical Shell," J Bone Miner Res, vol. 11, pp. 1356-63, 1996.
[11] O. Louis, J. Willnecker, S. Soykens, P. Van den Winkel, and M. Osteaux, "Cortical Thickness Sssessed by Peripheral Quantitative Computed Tomography: Accuracy Evaluated on Radius Specimens," Osteoporos Int, vol. 5, pp. 446-9, 1995
[12] S. C. Lee, B. S. Coan, and M. L. Bouxsein, "Tibial Ultrasound Velocity Measured in Situ Predicts the Material Properties of Tibial Cortical Bone," Bone, vol. 21, pp. 119-25, 1997.
[13] P. Laugier, B. Fournier, and G. Berger, "Ultrasound Parametric Imaging of the Calcaneus: In Vivo Results with a New Device," Calcif Tissue Int., vol. 58, pp. 326-331, 1996.
[14] M. Pithioux, P. Lasaygues, and P. Chabrand, "An Alternative Ultrasonic Method for Measuring the Elastic Properties of Cortical Bone," J Biomech, vol. 35, pp. 961-8, 2002.
[15] J. Okyere and A. J. Cousin, “The Design of High Voltage SCR Pulse Generator for Ultrasonic Pulse Echo Applications,” Ultrasonics, pp. 81-84, 1979.
[16] P. Mattila and M. Luukkla, “FET Pulse Generator for Ultrasonic Pulse Echo Applications,” Ultrasonics, pp.235-237, 1981.
[17] J. A. Brown and G. R. Lockwood, “A Low-Cost, High Performance Pulse Generator for Ultrasound Imaging,” IEEE Transactions On Ultrasound, Ferroelectrics, and Frequency Control, pp. 848-851, 2002.
[18] Geoff R. Lockwood, John W. Hunt and F. Stuart Foster, "The Design of Protection Circuitry for High-Frequency Ultrasound Imaging System," IEEE Trans. On Ultrasound, Ferroelectrics, and Frequency Control, Vol. 38, No.1, 1991
[19] D. H. Christopher F. Njeh, Claus C. Gluer, Thomas Fuerst and Harry K. Genant. , "Quantitative Ultrasound : Assessment of Osteoporosis and Bone Status," London Martin Dunitz, 1999.
[20] Douglas A. Christensen, "Ultrasonic Bioinstrumentation," New York: Wiley, 1988.
[21] 李志緯, 陳天送, 姚維仁 “利用超音波技術評估骨頭的機械特性”, 成功大學醫學工程研究所碩士論文, 民國九十年.
[22] IRF840 , http://wwww.ges.cz/sheet/i/irf840.pdf
[23] AD797, http://www.analog.com/UploadedFiles/Data_Sheets/507345751AD797_d.pdf
[24] AD811, http://www.analog.com/UploadedFiles/Data_Sheets/36407146AD811_e.pdf
[25] 友晶科技, http://www.terasic.com.tw/tw/
[26] P. M. Gammell, “IGBT-Based Kilovoltage Pulsers for Ultrasound Measurement Applications,” IEEE Transactions On Ultrasound, Ferroelectrics, and Frequency Control, vol.50, no.12, 2003.
[27] G. R. Lockwood, J. W. Hunt, F. S. Foster, “The Design of Protection Circuitry for High-Frequency Ultrasound Imaging Systems, ” IEEE Transactions On Ultrasound, Ferroelectrics, and Frequency Control, vol.38, no.1, 1991.