簡易檢索 / 詳目顯示

研究生: 陳吉忠
Chen, Chi-Chung
論文名稱: 具高能量強度對比之三模干涉分波多工器
Wavelength Division Multiplexer of High Energy Intensity Contrast Based on Triple-Mode Interference
指導教授: 蔡宗祐
Tsai, Tzong-Yow
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 多模干涉三模干涉分波多工器
外文關鍵詞: Multi-Mode Interference, Wavelength-Division Multiplexer(WDM), three-Mode Interference
相關次數: 點閱:125下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究目的在設計一個具有高能量強度對比的分波多工器元件。此元件的結構為一個可侷限三個模態之波導管,在波導管中央沿著波傳遞的方向蝕刻一條長凹槽,此長凹槽可提高波導管的色散性,並縮短元件的分波距離。元件的設計、模擬與效能分析是利用二維情況下的有限差分時域法(Finite Difference Time Domain, FDTD),分析的結果顯示此分波多工器能有效地使得波長為1530 nm與1570 nm的兩光波在短距離內分開,且能量強度對比可分別達到27.2 dB與31.5 dB,而嵌入損耗僅僅小於0.5 dB。元件設計中涉及的理論是多模干涉自我映射定律(Self-Imaging Principle),文中會對多模干涉以及用於模擬分析的FDTD數值模擬方法詳加討論。

      In this thesis, a novel wavelength division multiplexer (WDM) device of high energy intensity contrast is designed. The structure of this device based on multi-mode interference(MMI) is a three-moded waveguide etched centrally along the propagation direction of optical wave. The two-dimensional finite difference time domain(FDTD) is used for the design, simulation and analysis of this device. The result of simulation and analysis shows 1530nm and 1570nm can be divided effectively in a short distance in this three-moded device, and high energy intensity contrast and very low insertion loss are provided by this device. The energy intensity contrasts of 27.2dB and 31.5dB can be achieved for the wavelengths 1530nm and 1570nm respectively, and both the insertion loss below 0.5dB can be achieved for the wavelengths 1530nm and 1570nm. The theory of MMI based on self-imaging principle and the FDTD tool for simulation and analysis are introduced in the theory section.

    摘要……i Abstract……ii 誌謝……iv 目錄……v 圖目錄……viii 第一章 序論 1-1 前言……1 1-2 研究動機……1 1-3 研究方法……5 1-4 論文架構……5 第二章 原理 2-1 簡介……7 2-2 多模干涉(Multi-Mode Interference, MMI)理論……7 2-2.1 電磁波模態推導……10 2-2.2 二維(Two-Dimension)狀況下的傳播常數(βz)……12 2-2.3 導引模態(Guided-Mode)傳播分析……15 2-2.4 將波導管可侷限模態降至三個模態後之多模干涉分析……17 2-3 凹槽結構對導引模態影響……19 2-4 有限差分時域法(Finite Difference Time Domain)原理……23 第三章 具高能量強度對比之三模干涉分波多工器元件設計與初步模擬結果……25 第四章 三模干涉分波多工器元件之效能最佳化 4-1 最佳能量強度對比(Energy Intensity Contrast)與嵌入損耗(Insertion Loss)……37 4-1.1 能量強度對比……37 4-1.2 嵌入損耗……39 4-2 接上單模S-Bend輸出波導管……41 4-3 波長變化容忍度……46 第五章 討論與結論 5-1 討論……49 5-2 結論……50 5-3 未來展望……50 參考文獻……52 Appendix A……55 Appendix B……70 Apprndix C……72 Appendix D……73 Appendix E……77 Appendix F……81

    [1] H. Obara, Y. Hamazumi, and M. Teshima, “Multiwavelength routing using tunable lasers and arrayed-waveguide grating multiplexers for wavelength-division and space-division multiplexed crossconnects,” Electron. Lett., vol. 28, no. 23, pp. 2172-2174, 1992.

    [2] Y. Tachikawa, and M. Kawachi, “Lightwave transrouter based on arrayed-waveguide grating multiplexer,” Electron. Lett., vol. 30, no. 18, pp. 1504-1506, 1994.

    [3] U. Hilbk, G. Bader, H. Bunning, M. Burmeister, E. Grossmann, Th. Hermes, B. Hoen, K. Peters, F. Raub, J. Saniter, and F.-J Westphal,
    “Experimental WDM upgrade of a PON using an arrayed waveguide grating,” Opt. Commun.(ECOC '96.), vol. 3, pp. 31-34, 1996.

    [4] S. Sumriddetchkajorn, and K. Chaitavon, “Wavelength-sensitive thin-film filter-based variable fiber-optic attenuator with an embedded monitoring port,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1507-1509, 2004.

    [5] S. Suzuki, S. Sekine, K. Shuto, Y. Ueoka, and I. Nishi, “Small-size optical multi/demltiplexer using high Δ composite glass waveguide,” presented at IOOC Conf., paper 19D1-5, Osaka, Japan, July, 1989.

    [6] M.J.N. van Stralen, R. van Roijen, E.C.M. Pennings, J.M.M. van der Heijden, T. van Dongen, and B.H. Verbeek, “Design and fabrication of integrated InGaAsP ring lasers with MMI-outcouplers,” in Proc. European Conf. Integrated Optics(ECIO), Switzerland, pp. 2.24-2.25, 1993.

    [7] R. van Roijen, E.C.M. Pennings, M.J.N. van Stralen, T. Van Dongen, B.H. Verbeek, and J.M.M. van der Heijden, “Compact InP-based ring lasers employing multimode interference couplers and combiners,” Appl. Phys. Lett., vol. 64, no. 14, pp. 1753-1755, 1994.

    [8] M. Bachmann, M.K. Smit, L.B. Soldano, P.A. Besse, E. Gini, and H. Melchior, “Polarization-insensitive low-voltage optical waveguide switch using InGaAsP/InP four-port Mach-Zehnder interferometer,” in Proc. Conf. Opt. Fiber Commun.(OFC), CA, pp.32-33, 1993.

    [9] T. Negami, H. Haga and S. Yamamoto, “Guided-wave optical wave length demultiplexer using and asymmetric Y junction,” Appl. Phys. Lett., vol. 54, pp. 1080-1082, 1989.

    [10] Thomas F. Krauss, “Photonic Crystal Intergrated Optics,” Lasers and Electro-Optics 2001, Vol. 1, pp. I-282~I-283, 2001.

    [11] M. Bayindir, S.S. Akarca, E. Ozbay, “Photonic Band Gap structures for WDM Applications, ”Quantum Electronics and Laser Science Conference, 2002. QEL ‘02, pp. 84-85, 2002.

    [12] L.B. Soldano, E.C.M. Pennings, “Optical Multi-Mode Interference Devices Based on Self-Imaging: Principles and Applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.

    [13] C.F. Janz, M.R. Paiam, B.P. Keyworth, and J.N. Broughton, “Bent Waveguide Couplers for (De)Multiplexing of Arbitrary Broadly-Separated Wavelengths Using Two-Mode Interference,” IEEE Photon. Technol. Lett., vol. 7, no. 9, pp. 1037-1039, 1995.

    [14] I.R. Croston, T.P. Young, and S. Morasca, “A Highly Dispersive Wavelength Division Demultiplexer in InGaAlAs-InP for 1.5 μm Operation,” IEEE Photon. Technol. Lett., vol. 2, no. 10, pp. 734-737, 1990.

    [15] T.Y. Tsai, Z.C. Lee, C.S. Gau, F.S. Chen, J.R. Chen, and C.C. Chen, “A Novel Wavelength-Division Multiplexer Using Grating-Assisted Two-Mode Interference,” IEEE Photon. Technol. Lett., vol. 16, no. 10, pp. 2251-2253, 2004.

    [16] M. Lopez-Amo, P. Menendez-Valdes, M.A. Muriel, P. Kaczmarski, and P.E. Lagasse, “Design of Two-Mode Interference Wavelength Filter Utilising Symmetric Three-Mode Structure,” Electron. Lett., vol. 24, no. 24, pp. 1525-1526, 1988.

    [17] Kane S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Transactions on Antennas and Propagation, pp. 302-307, 1966.

    [18] N.S. Kapany and J.J. Burke, “Optical Waveguides,” New York: Academic, 1972.

    [19] Amnon Yariv, Pochi Yeh, “Optical Waves in Crystals,” A Wiley-Interscience publication, United States of America, 1984.

    [20] S.L. Chuang, “Physics of Optoelectronic Devices,” A Wiley-Interscience publication, United States of America, 1995.

    下載圖示 校內:2006-07-04公開
    校外:2006-07-04公開
    QR CODE