簡易檢索 / 詳目顯示

研究生: 李宜樺
Li, I-Hua
論文名稱: 以分子模擬探討突變對β-hairpin結構自由能與摺疊動力學之影響
Mutation Effect on the Structural Free Energy and Folding Kinetics of β-hairpin via Molecular Simulation
指導教授: 邱繼正
Chiu, Chi-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 99
中文關鍵詞: β-hairpin蛋白質摺疊分子模擬熱力學動力學
外文關鍵詞: β-hairpin, protein folding, molecular dynamics simulation, thermodynamics, kinetics
相關次數: 點閱:36下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蛋白質的功能和它的結構息息相關,而β-hairpins因其簡單的結構以及獨特的折疊特型而使它成為最廣泛的蛋白質摺疊研究標的。對於β-hairpin胜肽HP7而言,G8A突變會降低摺疊的速率,而N4A突變則會降低結構的穩定性,上述差異亦說明了蛋白質摺疊的複雜性。為了解突變對HP7摺疊的影響,我們運用分子模擬(MD)與多種進階取樣方法,包括:metadynamics, replica exchange molecular dynamics, 及forward flux sampling,來了解β-hairpins折疊的熱力學與動力學特性。當溫度升高時,HP7和G8A的Trp3-Trp10的T型堆積比例隨之遞減,而N4A則是會劇烈的下降。自由能分析顯示HP7和G8A單體在298 K以及343 K均可維持穩定的β-hairpins結構,代表兩者有很好的熱穩定性。此結果可以佐證圓二色光譜(CD)中216 nm的變化在低濃度條件下對溫度的敏感度比較低。而N4A在所有模擬溫度下都為不穩定的β-hairpin結構且較偏好無序的結構,亦和CD的結果相符。為了更進一步探討濃度效應,我們利用REMD分析β-hairpin在不同溫度下的二聚化行為。結果顯示HP7和G8A在兩個胜肽鏈之間形成的β-sheet比例隨溫度升高而減少,吻合實驗上CD圖譜在不同濃度間的差異。針對β-hairpin摺疊機制,透過MD的分析我們推敲其可能機制:β-turn先形成後,透過拉鍊機制形成主鏈氫鍵,形成完整的β-hairpin。基於此機制,運用FFS計算折疊速率,結果顯示β-turn的形成是整個折疊過程的關鍵中間產物。由於Ala側鏈的立體效應,G8A突變體會大幅降低β-turn的形成速率進而減緩折疊速率。但G8A突變對於後續氫鍵的形成並無顯著影響,因而導致了HP7和G8A的β-hairpin結構有相似的熱力學穩定性。

    The functions of proteins are highly connected with the unique 3D structures. Due to its simple conformation and unique folding behaviors, β-hairpins are one of most widely used proteins for studying protein folding. For the β-hairpin peptide HP7, the G8A mutation is known to significantly reduce the folding rate of the β-hairpin structure. In contrast, the N4A mutation greatly destabilizes the β-hairpin conformation. These results demonstrate the complexity of the β-hairpin folding. To understand the effects of mutation on HP7 folding, we combined molecular dynamics (MD) simulations with advanced sampling techniques, including metadynamics, replica exchange molecular dynamics (REMD) and forward flux sampling (FFS), to characterize the thermodynamics and kinetics of the β-hairpin folding.
    As temperature increases, the stacking probabilities of the Trp3-Trp10 pair within HP7 and the G8A mutant gradual decrease while that within the N4A mutant shows greater reduction. The free energy analyses illustrate that the β-hairpin conformations for both HP7 and G8A monomer remain stable at both 298 K and 343 K, suggesting very good thermostability for both peptides. These results agree with experimental circular dichroism (CD) analyses where the β-hairpin signal at 216 nm is less temperature sensitive at low concentrations. In contrast, the N4A mutant prefers disordered conformation at all tested temperatures, also consistent with experimental CD results. To further examine the concentration effect, we utilized REMD to analyze the peptide dimerization at various temperatures. Our results suggest that the content of inter-peptide β-sheets for HP7 and G8A gradually decreases with increasing temperature, leading to reduce β-sheet signal in CD thermogram observed in experiment. MD data further reveals that, for both HP7 and G8A, the turn structure forms first, followed by the formation of complete β-hairpin via the zipping mechanism. The FFS analyses based on such mechanism further identify the formation of turn as the key intermediate during the β-hairpin folding. G8A mutation drastically reduces the rate of β-turn formation due to the steric effect of the Alanine side chain. Note, however, the G8A mutation has little influence on the hydrogen bonds between β-sheets, leading to similar structural stabilities between HP7 and G8A.

    Table of Contents 摘要 I Abstract II Acknowledgement IV Table of Contents V List of Tables VIII List of Figures IX List of Symbols XV Chapter 1 INTRODUCTION 1 1-1 Proteins and its Structures 1 1-1-1 Amino Acids and Primary structures 1 1-1-2 Secondary Structures 4 1-1-3 Tertiary and Quaternary Structures 7 1-2 Protein Folding and its Mechanism 8 1-2-1 Protein Folding 8 1-2-2 Folding Mechanisms 10 1-2-3 Forces Related to Protein Stability 11 1-3 Motivation 12 Chapter 2 LITERATURE REVIEW 14 2-1 β-hairpins 14 2-2 Trp-Trp Interaction 15 2-3 β-hairpin peptide HP7 18 2-4 Effect of Concentration on protein folding 21 2-5 Simulation of Protein Folding Thermodynamics 23 2-5-1 Replica Exchange Molecular Dynamics (REMD) 24 2-5-2 Accelerated Molecular Dynamics (AMD) 25 2-5-3 Metadynamics 26 2-5-4 Markov State Model (MSM) 28 2-6 Simulation of Protein Folding Kinetics 29 2-6-1 Sampling Rare Events 29 2-6-2 Forward Flux Sampling 31 2-6-3 Applications of FFS in Proteins 36 Chapter 3 METHOD 40 3-1 Molecular Dynamics Simulation Details 40 3-1-1 β-hairpin peptides 40 3-1-2 Simulation Parameters 40 3-2 Root Mean Square Deviation (RMSD) Analysis 41 3-3 Protein Conformational Free Energy 42 3-3-1 Collective Variables (CVs) 42 3-3-2 Metadynamics 43 3-4 Protein Association from REMD 44 3-5 Rate Constant Calculation 45 3-5-1 Equilibrium MD 45 3-5-2 Order Parameters (OPs) 46 3-5-3 Forward Flux Sampling (FFS) 48 Chapter 4 RESULT AND DISCUSSION 52 4-1 Thermostabilities of β-hairpins 52 4-1-1 Trp-Trp Interaction 52 4-1-2 Thermostabilities and Free Energy Landscapes 58 4-1-3 Protein Association 60 4-2 Kinetics 62 4-2-1 Equilibrium MD of β-hairpin Folding 62 4-2-2 FFS 69 Chapter 5 Conclusion 79 References 81

    1. C.W. Pratt, K. Cornely. Essential Biochemistry, 4th ed.; 2003.
    2. C.B. Anfinsen. Principle that Govern the Folding of Protein Chains. science 1973, 181 (4096), 223–230.
    3. P.D. Sun, C.E. Foster, J.C. Boyington. Overview of Protein Structural and Functional Folds. Curr Protoc Protein Sci 2004, 35 (1), 1711–171189.
    4. M. Heim, L. Römer, T. Scheibel. Hierarchical structures made of proteins. The complex architecture of spider webs and their constituent silk proteins. Chem Soc Rev 2009, 39 (1), 156–164.
    5. D. Hames, N. Hooper. Biochemistry, 3rd ed.; 2005.
    6. R.H. Garrett, C.M. Grisham. Biochemistry, 5th ed.; 1994.
    7. D.L. Nelson, M.M. Cox. Lehninger Principles of Biochemistry, 4th ed.; W. H. Freeman & Co, New York, NY, 2005.
    8. S. Pal. Chapter 5 - Biomacromolecules. In Fundamentals of Molecular Structural Biology; Academic Press, 2020; pp 83–117.
    9. D. Eisenberg. The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proc National Acad Sci 2003, 100 (20), 11207–11210.
    10. L. Pauling, R.B. Corey. The Pleated Sheet, A New Layer Configuration of Polypeptide Chains. Proc. Natl. Acad. Sci 1951, 37, 251–256.
    11. O. Koch, M. Bocola, G. Klebe. Cooperative effects in hydrogen‐bonding of protein secondary structure elements: A systematic analysis of crystal data using Secbase. Proteins Struct Funct Bioinform 2005, 61 (2), 310–317.
    12. A.M.C. Marcelino, L.M. Gierasch. Roles of β‐turns in protein folding: From peptide models to protein engineering. Biopolymers 2008, 89 (5), 380–391.
    13. A.G. de Brevern. Extension of the classical classification of β-turns. Sci Rep-uk 2016, 6 (1), 33191.
    14. Y. Wei, A.A. Thyparambil, R.A. Latour. Protein Helical Structure Determination Using CD Spectroscopy for Solutions with Strong Background Absorbance from 190-230 nm. Biochim Biophys Acta. 2014, 1884 (12), 2331–2337.
    15. A. Al-Janabi. Has DeepMind’s AlphaFold solved the protein folding problem? Biotechniques 2022, 72 (3), 73–76.
    16. A.V. Finkelstein. 50+ Years of Protein Folding. Biochem Mosc 2018, 83 (Suppl 1), S3–S18.
    17. J. Jumper, R. Evans, A. Pritzel, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596 (7873), 583–589.
    18. F.U. Hartl. Protein Misfolding Diseases. Annu. Rev. Biochem. 2017, 86, 21–26.
    19. K.A. Dill, S.B. Ozkan, M.S. Shell, T.R. Weikl. The Protein Folding Problem. Annu Rev Biophys. 2008, 37, 289–316.
    20. R. Nassar, G.L. Dignon, R.M. Razban, K.A. Dill. The protein folding problem: The role of theory. J Mol Biol 2021, 433 (20), 167126.
    21. K.A. Dill, S.B. Ozkan, T.R. Weikl, J.D. Chodera, V.A. Voelz. The protein folding problem: when will it be solved? Curr Opin Struc Biol 2007, 17 (3), 342–346.
    22. K.A. Dill, J.L. MacCallum. The Protein-Folding Problem, 50 Years On. Science 2012, 338 (6110), 1042–1046.
    23. C. Zardecki, S. Dutta, D.S. Goodsell, M. Voigt, S.K. Burley. RCSB Protein Data Bank: A Resource for Chemical, Biochemical, and Structural Explorations of Large and Small Biomolecules. J Chem Educ 2016, 93 (3), 569–575.
    24. C. Levinthal. Are There Pathways for Protein Folding ? J. Chim. Phys. 1968, 65, 44–45.
    25. R. Zwanzig, A. Szabo, B. Bagchi. Levinthal’s paradox. Proc National Acad Sci 1992, 89 (1), 20–22.
    26. M. Karplus. The Levinthal paradox: yesterday and today. Fold Des 1997, 2 (4), S69–S75.
    27. R. Gilmanshin, S. Williams, R.H. Callender, W.H. Woodruff, R.B. Dyer. Fast events in protein folding: Relaxation dynamics of secondary and tertiary structure in native apomyoglobin. Proc. Natl. Acad. Sci. USA 1997, 94, 3709–3713.
    28. H.J. Dyson, P.E. Wright, H.A. Scheraga. The role of hydrophobic interactions in initiation and propagation of protein folding. PNAS 2006, 103 (35), 13057–13061.
    29. T.R. Sosnick, R.S. Dothager, B.A. Krantz. Differences in the folding transition state of ubiquitin indicated by ψ and φ analyses. PNAS 2004, 101 (50), 17377–17382.
    30. A. Matouschek, J.T. Kellis, L. Serrano, A.R. Fersht. Mapping the transition state and pathway of protein folding by protein engineering. Nature 1989, 340 (6229), 122–126.
    31. M. Cieplak, T.X. Hoang. Scaling of Folding Properties in Go Models of Proteins. J Biol Phys 2000, 26 (4), 273–294.
    32. J.D. Bryngelson, P.G. Wolynes. Spin glasses and the statistical mechanics of protein folding. Proc National Acad Sci 1987, 84 (21), 7524–7528.
    33. S.W. Englander, L. Mayne. The nature of protein folding pathways. Proc National Acad Sci 2014, 111 (45), 15873–15880.
    34. P.E. Leopold, M. Montal, J.N. Onuchic. Protein Folding Funnels: A Kinetic Approach to the Sequence-structure Relationship. Proc. Nati. Acad. Sci. USA 1992, 89, 8721–8725.
    35. F.U. Hartl, M. Hayer-Hartl. Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 2009, 16 (6), 574–581.
    36. V.A. Voelz, K.A. Dill. Exploring Zipping and Assembly as a Protein Folding Principle. Proteins Struct Funct Bioinform 2007, 66 (4), 877–888.
    37. S.B. Ozkan, G.A. Wu, J.D. Chodera, K.A. Dill. Protein folding by zipping and assembly. PNAS 2007, 104 (29), 11987–11992.
    38. A.A. Nickson, J. Clarke. What lessons can be learned from studying the folding of homologous proteins? Methods San Diego Calif 2010, 52 (1), 38–50.
    39. B. Nolting, K. Andert. Mechanism of Protein Folding. PROTEINS: Structure, Function, and Genetics 2000, 41, 288–298.
    40. O.B. Ptitsyn, A.A. Rashin. A model of myoglobin self-organization. Biophys Chem 1975, 3 (1), 1–20.
    41. J.B. Udgaonkar, R.L. Baldwin. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature 1988, 335 (6192), 694–699.
    42. M. Karplus, D.L. Weaver. Protein-folding dynamics. Nature 1976, 260 (5550), 404–406.
    43. K.A. Dill. The Meaning of Hydrophobicity. Science 1990, 250 (4978), 297–298.
    44. D.A. Dolgikh, R.I. Gilmanshin, E.V. Brazhnikov, et al. α-Lactalbumin: Compact State with Fluctuating Tertiary Structure? FEBS Lett. 1998, 136 (2), 311–315.
    45. D.B. Wetlaufer. Nucleation, Rapid Folding, and Globular Intrachain Regions in Proteins. Proc National Acad Sci 1973, 70 (3), 697–701.
    46. L.S. Itzhaki, D.E. Otzen, A.R. Fersht. The Structure of the Transition State for Folding of Chymotrypsin Inhibitor 2 Analysed by Protein Engineering Methods: Evidence for a Nucleation-condensation Mechanism for Protein Folding. J Mol Biol 1995, 254 (2), 260–288.
    47. D.E. Otzen, A.R. Fersht. Folding of Circular and Permuted Chymotrypsin Inhibitor 2: Retention of the Folding Nucleus †. Biochemistry-us 1998, 37 (22), 8139–8146.
    48. E. Shakhnovich, V. Abkevich, O. Ptitsyn. Conserved residues and the mechanism of protein folding. Nature 1996, 379 (6560), 96–98.
    49. H.-X. Zhou, X. Pang. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018, 118 (4), 1691–1741.
    50. L. Konermann, E. Aliyari, J.H. Lee. Mobile Protons Limit the Stability of Salt Bridges in the Gas Phase: Implications for the Structures of Electrosprayed Protein Ions. J Phys Chem B 2021, 125 (15), 3803–3814.
    51. H.R. Bosshard, D.N. Marti, I. Jelesarov. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. J Mol Recognit 2004, 17 (1), 1–16.
    52. J.E. Donald, D.W. Kulp, W.F. DeGrado. Salt bridges: Geometrically specific, designable interactions. Proteins Struct Funct Bioinform 2011, 79 (3), 898–915.
    53. K.T. Debiec, A.M. Gronenborn, L.T. Chong. Evaluating the Strength of Salt Bridges: A Comparison of Current Biomolecular Force Fields. J Phys Chem B 2014, 118 (24), 6561–6569.
    54. H. Meuzelaar, J. Vreede, S. Woutersen. Influence of Glu/Arg, Asp/Arg, and Glu/Lys Salt Bridges on α-Helical Stability and Folding Kinetics. Biophys J 2016, 110 (11), 2328–2341.
    55. C.M. Davis, R.B. Dyer. The Role of Electrostatic Interactions in Folding of β Proteins. J Am Chem Soc 2016, 138 (4), 1456–1464.
    56. S. Sung. Peptide folding driven by Van der Waals interactions. Protein Sci 2015, 24 (9), 1383–1388.
    57. C.N. Pace, H. Fu, K. Fryar, et al. Contribution of hydrogen bonds to protein stability. Protein Sci 2014, 23 (5), 652–661.
    58. R.E. Hubbard, M.K. Haider. Hydrogen Bonds in Proteins: Role and Strength. Encyclopedia of Life Sciences 2010.
    59. C.N. Pace, H. Fu, K.L. Fryar, et al. Contribution of Hydrophobic Interactions to Protein Stability. J Mol Biol 2011, 408 (3), 514–528.
    60. A. Onofrio, G. Parisi, G. Punzi, et al. Distance-dependent hydrophobic–hydrophobic contacts in protein folding simulations. Phys Chem Chem Phys 2014, 16 (35), 18907–18917.
    61. C. Narayanan, C.L. Dias. Hydrophobic interactions and hydrogen bonds in β-sheet formation. J Chem Phys 2013, 139 (11), 115103.
    62. C. Camilloni, D. Bonetti, A. Morrone, et al. Towards a structural biology of the hydrophobic effect in protein folding. Sci Rep-uk 2016, 6 (1), 28285.
    63. P. Stock, J.I. Monroe, T. Utzig, et al. Unraveling Hydrophobic Interactions at the Molecular Scale Using Force Spectroscopy and Molecular Dynamics Simulations. Acs Nano 2017, 11 (3), 2586–2597.
    64. H.J. Dyson, P.E. Wright, H.A. Scheraga. The Role of Hydrophobic Interactions in Initiation and Propagation of Protein Folding. PNAS 2006, 103 (35), 13057–13061.
    65. T.M. Raschke, J. Tsai, M. Levitt. Quantification of the hydrophobic interaction by simulations of the aggregation of small hydrophobic solutes in water. PNAS 2001, 98 (11), 5965–5969.
    66. R.W. Newberry, R.T. Raines. Secondary Forces in Protein Folding. Acs Chem Biol 2019, 14 (8), 1677–1686.
    67. E.E. Borrero, F.A. Escobedo. Folding kinetics of a lattice protein via a forward flux sampling approach. J Chem Phys 2006, 125 (16), 164904.
    68. Y. Gao, Y. Li, L. Mou, et al. Correct folding of an α-helix and a β-hairpin using a polarized 2D torsional potential. Sci Rep-uk 2015, 5 (1), 10359.
    69. E.L. McCallister, E. Alm, D. Baker. Critical role of β-hairpin formation in protein G folding. Nat Struct Biol 2000, 7 (8), 669–673.
    70. K.C. Jones, C.S. Peng, A. Tokmakoff. Folding of a heterogeneous β-hairpin peptide from temperature-jump 2D IR spectroscopy. Proc National Acad Sci 2013, 110 (8), 2828–2833.
    71. V.S. Pande, D.S. Rokhsar. Molecular dynamics simulations of unfolding and refolding of a β-hairpin fragment of protein G. Proc. Natl. Acad. Sci. USA 1999, 96, 9062–9067.
    72. C.M. Davis, S. Xiao, D.P. Raleigh, R.B. Dyer. Raising the Speed Limit for β Hairpin Formation. J Am Chem Soc 2012, 134 (35), 14476–14482.
    73. R. Hrabal, Z. Chen, S. James, H.P.J. Bennett, F. Ni. The hairpin stack fold, a novel protein architecture for a new family of protein growth factors. Nat Struct Biol 1996, 3 (9), 747–752.
    74. R.B. Dyer, S.J. Maness, E.S. Peterson, et al. The Mechanism of β-Hairpin Formation †. Biochemistry-us 2004, 43 (36), 11560–11566.
    75. A. Baumketner, J.-E. Shea. The Thermodynamics of Folding of a β Hairpin Peptide Probed Through Replica Exchange Molecular Dynamics Simulations. Theor Chem Acc 2006, 116 (1–3), 262–273.
    76. Q. Shao, J. Wang, J. Shi, W. Zhu. The universality of β-hairpin misfolding indicated by molecular dynamics simulations. J Chem Phys 2013, 139 (16), 165103.
    77. E. de Alba, M.A. Jiménez, M. Rico. Turn Residue Sequence Determines β-Hairpin Conformation in Designed Peptides. J Am Chem Soc 1997, 119 (1), 175–183.
    78. X. Wu, B.R. Brooks. β-Hairpin Folding Mechanism of a Nine-Residue Peptide Revealed from Molecular Dynamics Simulations in Explicit Water. Biophysical Journal 2004, 86, 1946–1958.
    79. M. Petrovich, A.L. Jonsson, N. Ferguson, V. Daggett, A.R. Fersht. Φ-Analysis at the Experimental Limits: Mechanism of β-Hairpin Formation. J Mol Biol 2006, 360 (4), 865–881.
    80. B.L. Sibanda, T.L. Blundell, J.M. Thornton. Conformation of β-hairpins in protein structures A systematic classification with applications to modelling by homology, electron density fitting and protein engineering. J Mol Biol 1989, 206 (4), 759–777.
    81. N.H. Andersen, K.A. Olsen, R.M. Fesinmeyer, et al. Minimization and Optimization of Designed β-Hairpin Folds. J Am Chem Soc 2006, 128 (18), 6101–6110.
    82. M. Favre, K. Moehle, L. Jiang, B. Pfeiffer, J.A. Robinson. Structural Mimicry of Canonical Conformations in Antibody Hypervariable Loops Using Cyclic Peptides Containing a Heterochiral Diproline Template. J Am Chem Soc 1999, 121 (12), 2679–2685.
    83. S.J. Russell, A.G. Cochran. Designing Stable β-Hairpins: Energetic Contributions from Cross-Strand Residues. J Am Chem Soc 2000, 122 (50), 12600–12601.
    84. A.G. Cochran, N.J. Skelton, M.A. Starovasnik. Tryptophan zippers: Stable, monomeric β-hairpins. Proc National Acad Sci 2001, 98 (10), 5578–5583.
    85. L. Wu, D. McElheny, R. Huang, T.A. Keiderling. Role of Tryptophan−Tryptophan Interactions in Trpzip β-Hairpin Formation, Structure, and Stability. Biochemistry-us 2009, 48 (43), 10362–10371.
    86. Z. Yu, S. Selvam, H. Mao. Intermediates Stabilized by Tryptophan Pairs Exist in Trpzip Beta-Hairpins. Biochemistry-us 2014, 53 (38), 5978–5986.
    87. A.M. Razavi, V.A. Voelz. Kinetic Network Models of Tryptophan Mutations in β Hairpins Reveal the Importance of Non-Native Interactions. J Chem Theory Comput 2015, 11 (6), 2801–2812.
    88. G. Hopping, J. Kellock, B. Caughey, V. Daggett. Designed Trpzip 3 β Hairpin Inhibits Amyloid Formation in Two Different Amyloid Systems. Acs Med Chem Lett 2013, 4 (9), 824–828.
    89. S. Honda, K. Yamasaki, Y. Sawada, H. Morii. 10 Residue Folded Peptide Designed by Segment Statistics. Structure 2004, 12 (8), 1507–1518.
    90. S. Honda, T. Akiba, Y.S. Kato, et al. Crystal Structure of a Ten-Amino Acid Protein. J Am Chem Soc 2008, 130 (46), 15327–15331.
    91. L. Wu, D. McElheny, T. Takekiyo, T.A. Keiderling. Geometry and Efficacy of Cross-Strand Trp/Trp, Trp/Tyr, and Tyr/Tyr Aromatic Interaction in a β-Hairpin Peptide. Biochemistry-us 2010, 49 (22), 4705–4714.
    92. J. Juraszek, P.G. Bolhuis. Effects of a Mutation on the Folding Mechanism of a β-Hairpin. J. Phys. Chem. B 2009, 113 (50), 16184–16196.
    93. H.R. Bureau, S. Quirk, R. Hernandez. The relative stability of trpzip1 and its mutants determined by computation and experiment. Rsc Adv 2020, 10 (11), 6520–6535.
    94. M. Jäger, M. Dendle, A.A. Fuller, J.W. Kelly. A cross‐strand Trp–Trp pair stabilizes the hPin1 WW domain at the expense of function. Protein Sci 2007, 16 (10), 2306–2313.
    95. D. Quiñonero, A. Frontera, C. Garau, et al. Interplay Between Cation–π, Anion–π and π–π Interactions. Chemphyschem 2006, 7 (12), 2487–2491.
    96. J.P. Gallivan, D.A. Dougherty. Packing of aromatic rings against tryptophan residues in proteins. Proc. Natl. Acad. Sci. 1999, 96, 9459 –9464.
    97. R. Thakuria, N.K. Nath, B.K. Saha. The Nature and Applications of π−π Interactions: A Perspective. Cryst. Growth Des. 2018, 19 (2), 523–528.
    98. C.M. Santiveri, M.A. Jiménez. Tryptophan Residues: Scarce in Proteins but Strong Stabilizers of b-Hairpin Peptides. Biopolymers 2010, 94 (6), 779–790.
    99. B. Domon, R. Aebersold. Mass Spectrometry and Protein Analysis. Science 2006, 100 (1), 3–4.
    100. J.A. Purslow, B. Khatiwada, M.J. Bayro, V. Venditti. NMR Methods for Structural Characterization of Protein-Protein Complexes. Frontiers Mol Biosci 2020, 7, 9.
    101. A. Cavalli, X. Salvatella, C.M. Dobson, M. Vendruscolo. Protein structure determination from NMR chemical shifts. Proc National Acad Sci 2007, 104 (23), 9615–9620.
    102. A.A. Yee, A. Savchenko, A. Ignachenko, et al. NMR and X-ray Crystallography, Complementary Tools in Structural Proteomics of Small Proteins. J Am Chem Soc 2005, 127 (47), 16512–16517.
    103. N.J. Greenfield. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 2006, 1 (6), 2876–2890.
    104. A. Micsonai, F. Wien, L. Kernya, et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc National Acad Sci 2015, 112 (24), E3095-103.
    105. M. Scian, I. Shu, K.A. Olsen, K. Hassam, N.H. Andersen. Mutational Effects on the Folding Dynamics of a Minimized Hairpin. Biochemistry-us 2013, 52 (15), 2556–2564.
    106. K. Bagińska, J. Makowska, W. Wiczk, F. Kasprzykowski, L. ChmurzyńSKI. Conformational studies of alanine‐rich peptide using CD and FTIR spectroscopy. J Pept Sci 2008, 14 (3), 283–289.
    107. R. Lazim, D. Suh, S. Choi. Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems. Int J Mol Sci 2020, 21 (17), 6339.
    108. Y. Sugita, Y. Okamoto. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 1999, 314 (1–2), 141–151.
    109. J. Zhang, M. Qin, W. Wang. Folding mechanism of β‐hairpins studied by replica exchange molecular simulations. Proteins Struct Funct Bioinform 2006, 62 (3), 672–685.
    110. Q. Shao. Folding or Misfolding: The Choice of β Hairpin. J Phys Chem B 2015, 119 (10), 3893–3900.
    111. S.T. Ngo, H.M. Hung, K.N. Tran, M.T. Nguyen. Replica exchange molecular dynamics study of the amyloid beta (11–40) trimer penetrating a membrane. Rsc Adv 2017, 7 (12), 7346–7357.
    112. D. Hamelberg, J. Mongan, J.A. McCammon. Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. J Chem Phys 2004, 120 (24), 11919–11929.
    113. S. Pawnikar, A. Bhattarai, J. Wang, Y. Miao. Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives. Adv Appl Bioinform Chem Aabc 2022, 15, 1–19.
    114. Y. Miao, W. Sinko, L. Pierce, et al. Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation. J Chem Theory Comput 2014, 10 (7), 2677–2689.
    115. A. Laio, M. Parrinello. Escaping free-energy minima. Proc National Acad Sci 2002, 99 (20), 12562–12566.
    116. A. Laio, F.L. Gervasio. Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Rep Prog Phys 2008, 71 (12), 126601.
    117. A. Barducci, M. Bonomi, M. Parrinello. Metadynamics. Wiley Interdiscip Rev Comput Mol Sci 2011, 1 (5), 826–843.
    118. G. Bussi, A. Laio. Using metadynamics to explore complex free-energy landscapes. Nat Rev Phys 2020, 2 (4), 200–212.
    119. S. Singh, M. Chopra, J.J. de Pablo. Density of States–Based Molecular Simulations. Annu Rev Chem Biomol 2012, 3 (1), 369–394.
    120. A. Laio, A. Rodriguez-Fortea, F.L. Gervasio, M. Ceccarelli, M. Parrinello. Assessing the Accuracy of Metadynamics †. J Phys Chem B 2005, 109 (14), 6714–6721.
    121. A. Barducci, G. Bussi, M. Parrinello. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys Rev Lett 2007, 100 (2), 020603.
    122. M. Bonomi, D. Branduardi, G. Bussi, et al. PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Comput Phys Commun 2009, 180 (10), 1961–1972.
    123. K.A. Konovalov, I.C. Unarta, S. Cao, E.C. Goonetilleke, X. Huang. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning. Jacs Au 2021, 1 (9), 1330–1341.
    124. R.J. Allen, C. Valeriani, P.R. ten Wolde. Forward flux sampling for rare event simulations. J Phys Condens Matter 2009, 21 (46), 463102.
    125. R.J. Allen, D. Frenkel, P.R. ten Wolde. Simulating rare events in equilibrium or nonequilibrium stochastic systems. J Chem Phys 2006, 124 (2), 024102.
    126. E.E. Borrero, F.A. Escobedo. Reaction coordinates and transition pathways of rare events via forward flux sampling. J Chem Phys 2007, 127 (16), 164101.
    127. R.J. Allen, D. Frenkel, P.R. ten Wolde. Forward flux sampling-type schemes for simulating rare events: Efficiency analysis. J Chem Phys 2006, 124 (19), 194111.
    128. C. Valeriani, R.J. Allen, M.J. Morelli, D. Frenkel, P.R. ten Wolde. Computing stationary distributions in equilibrium and nonequilibrium systems with forward flux sampling. J Chem Phys 2007, 127 (11), 114109.
    129. T.S. van Erp, D. Moroni, P.G. Bolhuis. A novel path sampling method for the calculation of rate constants. J Chem Phys 2003, 118 (17), 7762–7774.
    130. D. Moroni, P.G. Bolhuis, T.S. van Erp. Rate constants for diffusive processes by partial path sampling. J Chem Phys 2004, 120 (9), 4055–4065.
    131. Z.F. Brotzakis, P.G. Bolhuis. A one-way shooting algorithm for transition path sampling of asymmetric barriers. J Chem Phys 2016, 145 (16), 164112.
    132. T.S. van Erp. Efficiency analysis of reaction rate calculation methods using analytical models I: The two-dimensional sharp barrier. J Chem Phys 2006, 125 (17), 174106.
    133. T.S. van Erp. Dynamical Rare event simulation techniques for equilibrium and non-equilibrium systems. Adv Chem Phys 2012, 151, 27–60.
    134. F.A. Escobedo, E.E. Borrero, J.C. Araque. Transition path sampling and forward flux sampling. Applications to biological systems. J Phys Condens Matter 2009, 21 (33), 333101.
    135. E.E. Borrero, M. Weinwurm, C. Dellago. Optimizing transition interface sampling simulations. J Chem Phys 2011, 134 (24), 244118.
    136. J. Juraszek, P.G. Bolhuis. Rate Constant and Reaction Coordinate of Trp-Cage Folding in Explicit Water. Biophys J 2008, 95 (9), 4246–4257.
    137. A.K. Faradjian, R. Elber. Computing time scales from reaction coordinates by milestoning. J Chem Phys 2004, 120 (23), 10880–10889.
    138. R.J. Allen, P.B. Warren, P.R. ten Wolde. Sampling Rare Switching Events in Biochemical Networks. Phys Rev Lett 2005, 94 (1), 018104.
    139. S. Hussain, A. Haji-Akbari. Studying Rare Events using Forward-Flux Sampling: Recent Breakthroughs and Future Outlook. J Chem Phys 2019, 152 (6), 060901.
    140. K. Kratzer, A. Arnold, R.J. Allen. Automatic, optimized interface placement in forward flux sampling simulations. J Chem Phys 2013, 138 (16), 164112.
    141. C. Velez-Vega, E.E. Borrero, F.A. Escobedo. Kinetics and mechanism of the unfolding native-to-loop transition of Trp-cage in explicit solvent via optimized forward flux sampling simulations. J Chem Phys 2010, 133 (10), 105103.
    142. M.N. Rosenbluth, A.W. Rosenbluth. Monte Carlo Calculation of the Average Extension of Molecular Chains. J Chem Phys 1955, 23 (2), 356–359.
    143. C. Brooks, D.A. Case. Simulations of peptide conformational dynamics and thermodynamics. Chem Rev 1993, 93 (7), 2487–2502.
    144. C. Velez-Vega, E.E. Borrero, F.A. Escobedo. Kinetics and reaction coordinate for the isomerization of alanine dipeptide by a forward flux sampling protocol. J Chem Phys 2009, 130 (22), 225101.
    145. J.A. Luiken, P.G. Bolhuis. Primary Nucleation Kinetics of Short Fibril-Forming Amyloidogenic Peptides. J Phys Chem B 2015, 119 (39), 12568–12579.
    146. J. Kim, S.R. Brych, J. Lee, T.M. Logan, M. Blaber. Identification of a Key Structural Element for Protein Folding Within β-Hairpin Turns. J Mol Biol 2003, 328 (4), 951–961.
    147. D.J. Kozuch, F.H. Stillinger, P.G. Debenedetti. Low temperature protein refolding suggested by molecular simulation. J Chem Phys 2019, 151 (18), 185101.
    148. K. Lindorff‐Larsen, S. Piana, K. Palmo, et al. Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinform 2010, 78 (8), 1950–1958.
    149. G. Bussi, D. Donadio, M. Parrinello. Canonical sampling through velocity rescaling. J Chem Phys 2007, 126 (1), 014101.
    150. M. Parrinello, A. Rahman. Polymorphic transitions in single crystals: A new molecular dynamics method. J Appl Phys 1981, 52 (12), 7182–7190.
    151. G.J. Martyna, D.J. Tobias, M.L. Klein. Constant pressure molecular dynamics algorithms. J Chem Phys 1994, 101 (5), 4177–4189.
    152. U. Essmann, L. Perera, M.L. Berkowitz, et al. A smooth particle mesh Ewald method. J Chem Phys 1995, 103 (19), 8577–8593.
    153. B. Hess, H. Bekker, H.J.C. Berendsen, J.G.E.M. Fraaije. LINCS: A linear constraint solver for molecular simulations. J Comput Chem 1997, 18 (12), 1463–1472.
    154. M. Nava. Implementing dimer metadynamics using gromacs. J Comput Chem 2018, 39 (25), 2126–2132.
    155. M. Han, C. Chiu. Fast estimation of protein conformational preference at air/water interface via molecular dynamics simulations. J Taiwan Inst Chem E 2018, 92, 42–49.
    156. J. Juraszek, P.G. Bolhuis. Effects of a Mutation on the Folding Mechanism of a β-Hairpin. J Phys Chem B 2009, 113 (50), 16184–16196.
    157. G. Settanni, A.R. Fersht. High Temperature Unfolding Simulations of the TRPZ1 Peptide. Biophys J 2008, 94 (11), 4444–4453.
    158. M. Kulke, N. Geist, D. Möller, W. Langel. Replica-Based Protein Structure Sampling Methods: Compromising between Explicit and Implicit Solvents. J Phys Chem B 2018, 122 (29), 7295–7307.
    159. M. Andrec, A.K. Felts, E. Gallicchio, R.G. Levy. Protein folding pathways from replica exchange simulations and a kinetic network model. PNAS 2005, 102 (19), 6801–6806.
    160. A.B. Kapakayala. Tutorial on setting up the Replica Exchange Molecular Dynamics (REMD) simulation using alanine dipeptide as a toy model. 2019.
    161. J.J.-T. Huang, R.W. Larsen, S.I. Chan. The interplay of turn formation and hydrophobic interactions on the early kinetic events in protein folding. Chem Commun 2011, 48 (4), 487–497.
    162. V. Muñoz, P.A. Thompson, J. Hofrichter, W.A. Eaton. Folding dynamics and mechanism of β-hairpin formation. Nature 1997, 390 (6656), 196–199.
    163. J. Lee, S. Shin. Understanding β-Hairpin Formation by Molecular Dynamics Simulations of Unfolding. Biophys J 2001, 81 (5), 2507–2516.
    164. D. Du, M.J. Tucker, F. Gai. Understanding the Mechanism of β-Hairpin Folding via φ-Value Analysis †. Biochemistry-us 2006, 45 (8), 2668–2678.
    165. R.P.-Y. Chen, J.J.-T. Huang, H.-L. Chen, et al. Measuring the refolding of β-sheets with different turn sequences on a nanosecond time scale. P Natl Acad Sci Usa 2004, 101 (19), 7305–7310.
    166. A.A. Fuller, D. Du, F. Liu, et al. Evaluating β-turn mimics as β-sheet folding nucleators. Proc National Acad Sci 2009, 106 (27), 11067–11072.
    167. G.C. Sosso, T.F. Whale, M.A. Holden, et al. Unravelling the origins of ice nucleation on organic crystals. Chem Sci 2018, 9 (42), 8077–8088.
    168. L.-K. Chu. CD spectra [unpublished results]; 2020.
    169. S. Singh, C. Chiu, A.S. Reddy, J.J. de Pablo. α-helix to β-hairpin transition of human amylin monomer. J Chem Phys 2013, 138 (15), 155101.

    下載圖示 校內:2024-08-10公開
    校外:2024-08-10公開
    QR CODE