簡易檢索 / 詳目顯示

研究生: 林瓚東
Lin, Tsan-Tung
論文名稱: 耦合至結構熱庫之極化子玻色-愛因斯坦凝聚
Excitations in a Nonequilibrium Bose-Einstein Condensation of Polaritons coupled to a structured reservoir
指導教授: 陳岳男
Chen, Yueh-Nan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 56
中文關鍵詞: 極化子玻色-愛因斯坦凝聚結構熱庫
外文關鍵詞: Bose-Einstein Condensation, Polariton, structured reservoir
相關次數: 點閱:129下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中我們探討了在半導體微共振腔中的二維極化子,玻色-愛因斯坦凝聚態(BEC)下的激發譜。 在非平衡的情況下,極化子BEC可由耗散- Gross-Pitaevskii方程式來描述其凝聚態耦合至極化子熱庫的情況。我們也研究在不同條件下,激發譜在穩態下的解析與數值解。我們發現在空間均勻條件下,激發譜存在著擴散Goldstone mode 與動態之不穩定區。
    最後,我們考慮極化子BEC耦合至耗散的單一模態,等同於極化子BEC耦合至結構熱庫之Lorentzian態密度。隨著不同耦合強度,激發譜也可給出平坦,類似Bogoliubov,或是能隙之色散關係, 而耦合所產生的影響可增強或減弱系統的不穩定性。

    We study the dynamics of Bose-Einstein condensation of weakly interacting exciton-polaritons in a semiconductor microcavity. In the non-equilibrium regime, the dissipative Gross-Pitaevskii Equation is employed to describe the polariton condensate coupled to a polariton reservoir. The spectrum of the elementary excitations around the stationary state is analytically and numerically studied in different situations. There exists a diffusive Goldstone mode and a dynamical instability region for a spatially homogeneous geometry. Finally, the polariton BEC is considered to be coupled to a single-mode dissipative system, which corresponds to a reservoir with Lorentzian-shape density of states. By detuning the single-mode energy, the excitation spectrum exhibits a flat dispersion, a Bogoliubov-like dispersion, or an energy gap when increasing the coupling strength, which can enhance or supress the system instability.

    1 Introduction 6 2 Bose-Einstein condensation 8 2.1 Bose distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 BEC in finite two-dimensional system . . . . . . . . . . . . . . . . 9 2.3 Gross-Pitaevskii Equation . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Elementary excitations . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Polariton BEC in solid state system 15 3.1 Exciton-polariton and dispersion relation . . . . . . . . . . . . . 15 3.2 BEC of exciton polaritons . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 Elementary excitation of exciton polaritons . . . . . . . . . . . .19 4 The polariton BEC coupled to a structured reservoir 26 4.1 The polariton BEC coupled to a single mode . . . . . . . . . . . 26 4.1.1 Adiabatic regime (gamma_R > gamma_c). . . . . . . . . . . . . . . . . . . . . 28 4.1.2 Strongly mixed regime (gamma_R = gamma_c) . . . . . . . . . . . . . . . . . 37 5 Conclusions and Outlook 49 6 Appendix 52 6.1 Appendix A (2.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.1.1 Derivation of the Gross-Pitaevskii equation . . . . . . . . . . . . 52 Bibliography 54

    [1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell, Science 269, 198 (1995).
    [2] K. Burnett, M. Edwards, and C. W. Clark, Physics Today 52, 37 (1999).
    [3] J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szyma´ nska, R. André, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature 443, 409 (2006).
    [4] M. Asmanna, J.-S. Tempela, F. Veita, M. Bayera, A. Rahimi-Imanb, A. Lofflerb, S. Hoflingb, S. Reitzensteinb, L. Worschechb, and A. Forchelb, PNAS 108, 1804 (2011).
    [5] M. Wouters and I. Carusotto, Phys. Rev. Lett. 99, 140402 (2007).
    [6] H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).
    [7] M. Richard, J. Kasprzak, A. Baas, K. Lagoudakis, M. Wouters, I. Carusotto, R. Andre, B. Deveaud-Pledran, L. S. Dang, IJNT 7, 668 (2010).
    [8] S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Loffler, S. Hofling, A. Forchel, and Y. Yamamoto, Nature Phys. 4, 700 (2008).
    [9] A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdre, E. Giacobino and A. Bramati, Nature Phys. 5, 805 (2009).
    [10] S. Utsunomiya, L. Tian, G. Roumpos, C. W. Lai, N. Kumada, T. Fujisawa, M. Kuwata-Gonokami, A. Loffler, S. Hofling, A. Forchel and Y. Yamamoto, Nature Phys 4, 700 (2008).
    [11] K. G. Lagoudakis, T. Ostatnicky, A.V. Kavokin, Y. G. Rubo, R. Andre, B. Deveaud-Pledran, Science 326, 974 (2009).
    [12] G. Roumpos, M. D. Fraser, A. Loffler, S. Hofling, A. Forchel and Y. Yamamoto, Nature Phys. 7, 129 (2011).
    [13] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007).
    [14] D. Sanvitto, A. Amo, and L. Vina, Phys. Rev. B 80, 045301 (2009).
    [15] V. Bagnato and D. Kleppner Phys. Rev. A 44, 7439 (1991).
    [16] V. Savona, Phys. Rev. A 44, 737 (1998).
    [17] H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Science 298, 199 (2002).
    [18] D. Snoke, Science 298, 1368 (2002).
    [19] M. T. Portella-Oberli, V. Ciulin, S. Haacke, J.-D. Ganiére, P. Kossacki, M. Kutrowski, T. Wojtowicz, and B. Deveaud, Phys. Rev. B 66, 155305 (2002).
    [20] B. Elattari, and S. A. Gurvitz, Phys. Rev. A 62, 032102 (2000).
    [21] M. Imamovic´ c-Tomasovi´ c, Phys. Rev. A 60, 494 (1999).
    [22] D. Sarchi, thèse EPFL, no 3906 (2007).
    [23] A. Griffin, Phys. Rev. B 53, 9341 (1996).
    [24] H. Shi and A. Griffin, Phys. Rep. 304, 1 (1998).
    [25] R. Gati and M. K. Oberthaler, J. Phys. B: At. Mol. Opt. Phys. 40, R6-R89 (2007).

    下載圖示
    2012-07-21公開
    QR CODE