簡易檢索 / 詳目顯示

研究生: 蔣杰廷
Chiang, Chieh-Ting
論文名稱: 超高性能混凝土(UHPC)應用於伸縮縫之碳排量效益分析-以台南市北外環快速道路第三期工程為例
Life Cycle Carbon Emission Performance of Ultra High Performance Concrete (UHPC) in Expansion Joint Applications-A Case Study of Tainan Northern Outer Ring Road, Phase 3
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 114
語文別: 中文
論文頁數: 93
中文關鍵詞: 超高性能混凝土(UHPC)碳足跡生命週期評估(LCA)伸縮縫UHPC連接板
外文關鍵詞: Ultra-High Performance Concrete (UHPC), Carbon Footprint, Life Cycle Assessment(LCA), Expansion Joint, UHPC Link Slab
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以台南市北外環快速道路第三期工程為案例,探討超高性能混凝土(Ultra High Performance Concrete, UHPC)應用於橋梁伸縮縫之碳排放效益,研究方法採全生命週期評估(Life Cycle Assessment, LCA),針對傳統伸縮縫、UHPC伸縮縫及UHPC連接板三種工法,建立初始完成、維護、重作及拆除等各階段之碳排量計算模型,並比較不同工法於全生命週期的碳排放表現。
    分析結果顯示,雖然UHPC在初始完成階段因材料成分碳排量較高,但其高耐久性可有效延長使用年限並降低維護頻率,相較於傳統伸縮縫工法,UHPC伸縮縫與UHPC連接板在相同分析年限下的全生命週期總碳排量均較低,其中以連接板工法效益最為顯著。
    綜上所述,UHPC應用於橋梁伸縮縫工程不僅具備結構耐久性與行車舒適性的優勢,更能透過降低維護頻率與延長使用壽命,達到整體減碳效益。研究成果可提供國內未來橋梁設計與維護工法選擇之參考,並呼應政府推動減碳及永續發展政策,顯示其具備高度可行性與推廣價值。

    In response to global climate change and the 2050 Net Zero emissions goal, the construction industry is prioritizing low-carbon infrastructure. Bridge expansion joints are critical but vulnerable components, often requiring frequent maintenance due to heavy traffic loads and environmental degradation. These maintenance activities generate both direct material emissions and indirect emissions associated with traffic congestion. Ultra-High Performance Concrete (UHPC), characterized by its superior mechanical properties and durability, offers a solution to extend service life and minimize maintenance needs.
    This study uses the Tainan Northern Outer Ring Road Phase 3 project as a case study to quantify the life cycle carbon emission benefits of applying UHPC to bridge expansion joints. A Life Cycle Assessment (LCA) model was established to evaluate three construction methods: (1) Traditional Expansion Joint, (2) UHPC Expansion Joint, and (3) UHPC Link Slab. The assessment covers a 100-year analysis period, incorporating carbon emissions from initial construction, maintenance, replacement, demolition, and indirect traffic delays, while also considering steel recycling benefits.
    The results indicate that although UHPC exhibits a higher initial carbon footprint, its superior durability substantially reduces maintenance frequency over the service life. The UHPC Link Slab demonstrated the lowest life cycle carbon emissions. Even for the UHPC Expansion Joint, the cumulative carbon benefits surpass those of traditional methods after approximately 5 to 7 years of service. This study confirms that adopting UHPC materials, particularly the jointless Link Slab design, is an effective strategy for achieving sustainable and resilient bridge infrastructure.

    摘要 I 目錄 VIII 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法 3 第二章 文獻回顧 4 2.1 橋梁伸縮縫 4 2.1.1 伸縮縫型式與特性 4 2.1.2 常見破壞原因 7 2.1.3 維修與改善方式 8 2.2 超高性能混凝土(UHPC) 9 2.2.1 材料組成與特性 9 2.2.2 UHPC與OPC性能比較 10 2.2.3 UHPC國外應用實例 11 2.2.4 UHPC國內發展現況 12 2.2.5 UHPC錨固材之抗壓強度與抗磨耗性能 13 2.3 UHPC連接板(LINK SLAB) 16 2.3.1 設計原理與構造形式 16 2.3.2 實際應用案例 17 2.3.3 國內研究現況 18 2.4 全生命週期評估(LCA) 19 2.4.1 生命週期評估概述 19 2.4.2 LCA之國際規範與制度架構 20 2.4.3 系統邊界 21 2.5 碳足跡 22 2.5.1 碳足跡概述 22 2.5.2 UHPC碳排量 23 第三章 試驗規劃與方法 25 3.1 研究案例介紹 25 3.1.1 北外環快速道路工程概述 25 3.1.2 北外環快速道路橋梁伸縮縫介紹 27 3.2 研究工法說明 28 3.2.1 傳統伸縮縫工法 29 3.2.2 UHPC伸縮縫工法 31 3.2.3 UHPC連接板工法 31 3.2.4 各工法材料項目 32 3.3 材料數量計算 33 3.4 維護情境與年限設定 38 3.4.1 維護頻率 38 3.4.2 維護範圍 39 3.4.3 分析年限 40 3.4.4 使用年限 40 3.5 碳排量計算 41 3.5.1 基礎碳排量計算 41 3.5.2 交通影響間接碳排量計算 42 3.5.3 鋼構件回收效益 44 3.6 碳排放係數與數據品質 46 3.6.1 碳排放係數選用原則 46 3.6.2 碳排放係數彙整 47 3.6.3 數據品質評估 49 3.7 研究假設與限制 51 第四章 試驗結果與討論 53 4.1 傳統伸縮縫工法碳排量分析結果 53 4.2 UHPC伸縮縫工法碳排量分析結果 55 4.3 UHPC連接板工法碳排量分析結果 57 4.4 各工法碳排量評估結果及比較分析 59 4.4.1 全生命週期分析結果 59 4.4.2 初始完成階段分析結果 65 4.4.3 各工法碳排放來源占比分析 66 4.4.4 各工法年化碳排量分析 70 第五章 結論與建議 72 5.1 結論 72 5.2 建議 73 第六章 參考文獻 75

    [1] 行政院國家永續發展委員會,臺灣2050淨零排放路徑及策略總說明,2022。
    [2] 交通部臺灣區國道高速公路局苗栗工務段,國道橋梁伸縮縫種類介紹,2015。
    [3] 林登淵、湯輝雄,淺談台灣公路橋樑伸縮縫損壞原因與預防策略,臺灣公路工程,第32卷,第13期,頁2-32,2006。
    [4] 林宜璽,提升橋梁伸縮縫平整度之研究,國立中央大學土木工程學系碩士論文,2018。
    [5] 顏誠皜、洪崇展,超高性能混凝土(UHPC)材料與結構應用及文獻回顧,土木水利,第49卷,第5期,頁43-47,2022。
    [6] 顏誠皜、李宜璋、洪崇展,UHPC材料設計與製程,中國土木水利工程學刊,第34卷,第1期,頁99-107,2022。
    [7] 余沛涵,超高性能混凝土於耐震補強詳細評估之輔助分析程式,國立成功大學土木工程研究所碩士論文,2022。
    [8] 陳育聖,超高性能混凝土(UHPC)之發展介紹,營建知訊,第483期,頁46-54,2023。
    [9] 洪崇展、吳瑞安、蔣啟恆、陳明谷、吳秉益、顏誠皜,臺南都會區北外環道路-超高性能混凝土(UHPC)伸縮縫之國內首例應用,中國土木水利工程學刊,第34卷,第1期,頁53-62,2022。
    [10] 洪崇展、林彥宇、蘇育民,橋梁伸縮縫使用UHPC初步可行性評估委託專業服務案期末報告,國立成功大學,內政部國土管理署委託研究計畫,2024。
    [11] S. Pyo, S. Y. Abate, and H.-K. Kim, “Abrasion resistance of ultra high performance concrete incorporating coarser aggregate,” Construction and Building Materials, vol. 165, pp. 11–16, 2018.
    [12] FHWA, Federal Highway Administration, Case Study: Eliminating Bridge Joints with Link Slabs – An Overview of State Practices, 2020.
    [13] FHWA, Federal Highway Administration, Ultra-High Performance Concrete (UHPC) Link Slab Design Example, 2023.
    [14] ISO, International Organization for Standardization, Environmental management — Life cycle assessment — Principles and framework. ISO 14040, 2006.
    [15] EPD Australasia, Understanding Changes to the Construction Products Product Category Rules (PCR), 2025.
    [16] ISO, International Organization for Standardization, Sustainability in buildings and civil engineering works—core rules for environmental product declarations of construction products and services. ISO 21930, 2017.
    [17] ISO, International Organization for Standardization, Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification. ISO 14067, 2018.
    [18] J. Lehne and F. Preston, Making Concrete Change: Innovation in Low-carbon Cement and Concrete, Chatham House - The Royal Institute of International Affairs, 2018.
    [19] H. Sameer, V. Weber, C. Mostert, S. Bringezu, E. Fehling, and A. Wetzel, “Environmental Assessment of Ultra-High-Performance Concrete Using Carbon, Material, and Water Footprint,” Materials, vol. 12, no. 6, p. 851, 2019.
    [20] M. Wang, M. Du, Y. Jia, C. Chang, and S. Zhou, “Carbon Emission Optimization of Ultra-High-Performance Concrete Using Machine Learning Methods,” Materials, vol. 17, no. 7, p. 1670, 2024.
    [21] B. Aarup, “Precast Elements in UHPC: Improving on Their Carbon Footprint,” in Proc. 3rd Int. Interactive Symp. on Ultra-High Performance Concrete, Paper No. 56, 2023.
    [22] C. Sun, K. Wang, Q. Liu, P. Wang, and F. Pan, “Machine-Learning-Based Comprehensive Properties Prediction and Mixture Design Optimization of Ultra-High-Performance Concrete,” Sustainability, vol. 15, no. 21, p. 15338, 2023.
    [23] J. Fan, Y. Shao, M. J. Bandelt, M. P. Adams, and C. P. Ostertag, “Sustainable reinforced concrete design: The role of ultra-high performance concrete (UHPC) in life-cycle structural performance and environmental impacts,” Engineering Structures, vol. 316, p. 118585, 2024.
    [24] M. Sheheryar, R. Rehan, and M. L. Nehdi, “Estimating CO2 Emission Savings from Ultrahigh Performance Concrete: A System Dynamics Approach,” Materials, vol. 14, no. 4, p. 995, 2021.
    [25] 臺南市政府工務局,工務局新聞與公告彙整,臺南市政府網站,網址:https://www.tainan.gov.tw/, 2022。
    [26] 內政部營建署南區工程處,臺南都會區北外環道路第3期新建工程基本設計報告,2016。
    [27] FHWA, Federal Highway Administration, Construction Analysis for Pavement Rehabilitation Strategies (CA4PRS): A Tool for Integrated Schedule-Traffic-Cost Analysis for Highway Projects, 2008.
    [28] 林國顯、李宗益、蘇振維,能源消耗、污染排放推估模式與永續運輸模式之整合應用,交通部運輸研究所,2010。
    [29] U.S. Geological Survey, Iron and Steel Scrap in May 2025, Mineral Industry Surveys, U.S. Department of the Interior, 2025.
    [30] World Steel Association, Life Cycle Inventory (LCI) Study for Steel Products: 2021 Data Release, 2021.
    [31] 東和鋼鐵企業股份有限公司,2023年東和鋼鐵永續報告書,2024。
    [32] 工業技術研究院,產品碳足跡排放係數數據品質評估標準手冊,2012。

    QR CODE