簡易檢索 / 詳目顯示

研究生: 姜家煒
Chiang, Chia-Wei
論文名稱: 海運貨櫃櫃場最佳化指派演算法之研究
A Rule-Based Heuristics for the Storage Space Allocation Problem at a Container Terminal
指導教授: 林東盈
Lin, Dung-Ying
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 44
中文關鍵詞: 空間配置問題演算法海運貨櫃櫃場配置
外文關鍵詞: Storage Space Allocation Problem, Heuristic, Container Yard Planning
相關次數: 點閱:134下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於貨櫃裝船與貨櫃驗關所需之時間具有高度不對稱性,海運貨櫃櫃場最佳配置問題旨在求解最佳的櫃場配置,以減少沒有效率的壓櫃情況與翻櫃需求。本論文發展一套以決策準則(decision rule-based)為基礎的演算法,並且在演算法的發展過程中,額外發現海運貨櫃櫃場最佳配置問題的三個屬性。透過綜合的數據實驗,本論文所發展之演算法能在一秒之內求解真實世界的問題。值得注意的是,歸因於良好的求解效率,若不可預期的狀況發生(如:貨櫃報到順序改變),海運櫃場人員可在一秒之內重新求解。此外,透過驗證高雄港及次世代貨櫃船的案例,本論文發現,隨著求解貨櫃數增加,演算法的效用(effectiveness)越高,但求解時間仍保持在一秒之內,且能應用在不同的櫃場配置,以及適用不同的櫃場機具設備。

    There is an asymmetry between the time required to retrieve a container and place it on a vessel and the time required to register a container at a gate. The storage space allocation problem (SSAP) requires finding the best allocation policy for these containers that minimizes the potential number of gantry movements during the assignment process and future retrieval processes. This study proposes a decision rule-based heuristic and presents related three properties. Comprehensive numerical experiments show that the proposed heuristic can solve real-sized instances within a second. Uncertainty can be accounted for because the re-optimization effort is negligible. Moreover, when the proposed heuristic was applied to a container yard at the Port of Kaohsiung in Taiwan and extreme cases were considered, the heuristic performance increased with increasing number of containers and the required time to solve the extreme cases was less than one second. Finally, the proposed heuristic can be applied to different layouts of storage space and various material handling machines.

    摘要 i ABSTRACT ii 誌謝 iii TABLE OF CONTENTS v LISTS OF TABLES vii LISTS OF FIGURES viii 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Objective 2 1.3 Research Scope 2 1.4 Research Content with Research Flow Chart 4 2. LITERATURE REVIEW 6 2.1 The Storage Space Allocation Problem 6 2.2 The Joint Retrieval and Reshuffle Problem 7 2.3 The Pre-Marshalling Problem 8 2.4 Alternative Stream of Studies of SSAP-related Problems 8 2.5 Recent Trends in SSAP-related Issues 9 2.6 Summary 11 3. STORAGE SPACE ALLOCATION PROBLEM 12 3.1 Problem Statement 12 3.2 Assumptions 13 4. SOLUTION HEURISTIC 15 4.1 Background 15 4.2 Proposed Heuristic for Storage Space Allocation Problem 18 4.2.1 Decision Criterion 1 21 4.2.2 Decision Criterion 2 24 4.2.3 Decision Criterion 3 25 4.2.4 Properties 27 4.3 Pseudo-Code of Solution Heuristic 30 5. NUMERICAL EXPERIMENTS 31 6. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH 40 6.1 Conclusion 40 6.2 Directions for Future Research 41 REFERENCES 42

    [1] Bazzazi, M., Safaei, N., Javadian, N. (2009). “A genetic algorithm to solve the storage space allocation problem in a container terminal.” Computers & Industrial Engineering 56(1): 44-52.
    [2] Carlo, H. J., Vis, I. F. A., Roodbergen, K. J. (2014). “Storage yard operations in container terminals: Literature overview, trends, and research directions.” European Journal of Operational Research 235(2): 412-430.
    [3] Caserta, M., Voss, S., Sniedovich, M. (2011). “Applying the corridor method to a blocks relocation problem.” Or Spectrum 33(4): 915-929.
    [4] Casey, B., Kozan, E. (2012). “Optimising container storage processes at multimodal terminals.” Journal of the Operational Research Society 63(8): 1126-1142.
    [5] Choe, R., Park, T., Oh, M.-S., Kang, J., Ryu, K. R. (2011). “Generating a rehandling-free intra-block remarshaling plan for an automated container yard.” Journal of Intelligent Manufacturing 22(2): 201-217. doi: 10.1007/s10845-009-0273-y
    [6] Dekker, R., Voogd, P., Van Asperen, E. (2006). “Advanced methods for container stacking.” OR Spektrum 28(4): 563-586.
    [7] Gharehgozli, A., Mileski, J. P., Duru, O. (2017). “Heuristic estimation of container stacking and reshuffling operations under the containership delay factor and mega-ship challenge.” Maritime Policy & Management 44(3): 373-391. doi: 10.1080/03088839.2017.1295328
    [8] Henesey, L., Davidsson, P., Persson, J. A. (2009). “Agent based simulation architecture for evaluating operational policies in transshipping containers.” Autonomous Agents and Multi-Agent Systems 18(2): 220-238.
    [9] Hirashima, Y., Takeda, K., Harada, S., Deng, M. C., Inoue, A. (2006). “A Q-Learning for group-based plan of container transfer scheduling.” Jsme International Journal Series C-Mechanical Systems Machine Elements and Manufacturing 49(2): 473-479.
    [10] Hu, Y. H., Zhu, Z. D., Hsu, W. J. (2008). “AS/RS based yard and yard planning.” Journal of Zhejiang University-Science A 9(8): 1083-1089.
    [11] Keceli, Y. (2016). “A simulation model for gate operations in multi-purpose cargo terminals.” Maritime Policy & Management 43(8): 945-958. doi: 10.1080/03088839.2016.1169448
    [12] Kim, K. H., Hong, G. P. (2006). “A heuristic rule for relocating blocks.” Computers & Operations Research 33(4): 940-954.
    [13] Kim, K. H., Park, Y. M., Ryu, K.-R. (2000). “Deriving decision rules to locate export containers in container yards.” European Journal of Operational Research 124(1): 89-101.
    [14] Kim, K. H., Zhang, X. H. (2010). “Distributed framework for yard planning in container terminals.” Journal of Zhejiang University-Science A 11(12): 992-997.
    [15] Konecranes. (2010). Rail Mounted Gantry Crane Manual [Press release]
    [16] Ku, L. P., Lee, L. H., Chew, E. P., Tan, K. C. (2010). “An optimisation framework for yard planning in a container terminal: case with automated rail-mounted gantry cranes.” Or Spectrum 32(3): 519-541.
    [17] Lee, Y., Chao, S. L. (2009). “A neighborhood search heuristic for pre-marshalling export containers.” European Journal of Operational Research 196(2): 468-475.
    [18] Lee, Y., Hsu, N. Y. (2007). “An optimization model for the container pre-marshalling problem.” Computers & Operations Research 34(11): 3295-3313.
    [19] Lin, D. Y., Lee, Y. J., Lee, Y. S. (2015). “The container retrieval problem with respect to relocation.” Transportation Research Part C-Emerging Technologies 52: 132-143.
    [20] Ng, W. C., Mak, K. L., Li, M. K. (2010). “Yard planning for vessel services with a cyclical calling pattern.” Engineering Optimization 42(11): 1039-1054.
    [21] Sgouridis, S. P., Makris, D., Angelides, D. C. (2003). “Simulation analysis for midterm yard planning in container terminal.” Journal of Waterway Port Coastal and Ocean Engineering-Asce 129(4): 178-187.
    [22] Shi, W. M., Li, K. X. (2017). “Themes and tools of maritime transport research during 2000-2014.” Maritime Policy & Management 44(2): 151-169. doi: 10.1080/03088839.2016.1274833
    [23] Thurston, T., Huosheng, H. (2002, 2002). Distributed agent architecture for port automation. Paper presented at the Proceedings 26th Annual International Computer Software and Applications.
    [24] UNCTAD. (2014). Review of Maritime Transport.
    [25] Wan, Y.-w., Liu, J., Tsai, P.-C. (2009). “The Assignment of Storage Locations to Containers for a Container Stack.” Naval Research Logistics 56(8): 699-713. doi: 10.1002/nav.20373
    [26] Won, S. H., Zhang, X. H., Kim, K. H. (2012). “Workload-based yard-planning system in container terminals.” Journal of Intelligent Manufacturing 23(6): 2193-2206.
    [27] Yang, J. H., Kim, K. H. (2006). “A grouped storage method for minimizing relocations in block stacking systems.” Journal of Intelligent Manufacturing 17(4): 453-463.
    [28] Zhang, C., Chen, W., Shi, L., Zheng, L. (2010). “A note on deriving decision rules to locate export containers in container yards.” European Journal of Operational Research 205(2): 483-485. doi: 10.1016/j.ejor.2009.12.016
    [29] Zhen, L., Chew, E. P., Lee, L. H. (2011). “An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs.” Transportation Science 45(4): 483-504.

    無法下載圖示 校內:2022-06-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE