簡易檢索 / 詳目顯示

研究生: 羅兆呈
Luo, Zhao-Cheng
論文名稱: 使用智慧型手機內建之加速度計於動能感知系統之開發與應用
The Development of Activity Recognition System Using the Smartphone with Accelerometer
指導教授: 蔣榮先
Chiang, Jung-Hsien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 醫學資訊研究所
Institute of Medical Informatics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 44
中文關鍵詞: 加速度感測器動作辨識
外文關鍵詞: 3-axis accelerometer, activity recognition
相關次數: 點閱:95下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,慢性疾病已經佔了全球致死率成因的60%,估計在2020年,會有高達73%的民眾因為慢性疾病而死。目前已經有許多文獻指出,肥胖與慢性疾病的發生具有正相關的關係。定期且規律的運動習慣,有助於降低慢性疾病所造成的風險。
    本研究的目的在於,以單一三軸加速度感測器建立動能感知系統,精確辨識並紀錄人體日常生活的八個動作類別與進行時間,並回饋使用者作為減重的依據。除了當作日常生活自主運動管理平台,進一步可與醫療機構合作,醫生給予使用者適當的運動量建議,助於建立使用者平日養成運動健身的習慣,並降低慢性疾病發生的機率。
    在演算法的部份,本論文採用資訊增益的方式來選出有意義的特徵子集合,並建立樹狀擴張型貝氏分類模型來進行動作辨識。
    最後,本論文在實際實驗中評估樹狀擴張型貝氏分類器所建構的辨識器之效能,分別探討下列兩點:(1)選取出的特徵向量之有效性,(2)分類模型的辨識能力並在人體動作辨識有不錯的效果。

    In recent years, chronic diseases accounts for the 60% proportion in cause of death, it going to be up to 73% dead because of chronic diseases in 2020. According to literatures, obesity increase the morbidity of chronic diseases and Regular exercise reduce the incidence of chronic disease.
    The purpose of this research is aimed to use single 3 axis accelerometer which embedded in smart phone to develop an activity recognition system. It can detected and take down the 8 types of human daily activity and their duration. Besides, the user will be rewarded the record as a diet basis. It can be a self-exercise manager platform, moreover, can be used by medical organization. Through this system, doctor can provide user appropriate exercise suggestion which will help user to form exercise habit, and lower the morbidity of chronic disease.
    On methodology, the research transformed raw data to feature vector by information gain, developed a tree augmented naïve bayes classifier in recognition system.
    Finally, this research evaluated the performance of the classifier in practical experiment. Our result have successfully validated: 1) the effectiveness of feature selection 2) recognition capability of the classifier and achieve satisfactory performance for human activity recognition.

    摘要 I Abstract II 第一章 導論 1 1.1 研究背景與動機 1 1.2 研究目的與特定目標 3 1.2.1 從智慧型手機中收取三軸加速度感測訊號 3 1.2.2 從加速度訊號中擷取出具有代表性的特徵集合 3 1.2.3 建立適用於系統的分類模型 3 1.3 章節概要 4 第二章 相關文獻研究 5 2.1 特徵擷取 5 2.1.1 時域特徵 6 2.1.2 頻域特徵 6 2.2 動作辨識演算法 7 2.3 系統應用 8 第三章 應用樹狀擴張型貝氏分類器於人體動作辨識 9 3.1 研究概述 9 3.2 系統架構流程 9 3.3 訓練資料收集 10 3.3.1 定義動作類別 11 3.3.2 移除例外資料 11 3.4 分類模型訓練 12 3.4.1 擷取具代表性特徵及篩選 13 3.4.2 建立樹狀擴張型貝氏分類網路 19 3.5 測試 22 第四章 實驗設計與結果分析 24 4.1 實驗環境設置 24 4.1.1 實驗工具簡介 24 4.1.2 實驗裝置介紹 26 4.1.3 實驗資料收集格式 26 4.2 實驗設計與結果分析 29 4.2.1 分類模型特徵最佳化 29 4.2.2 分類準確性結果分析 33 4.2.3 不同分類方法間之分析比較 35 4.3 實驗總結 37 第五章 結論與未來展望 38 5.1 結論 38 5.2 未來展望 39

    [1] Lester J, Choudhury T, Borriello G,“A Practical Approach to Recognizing Physical Activities,” Pervasive Computing, pp. 1–16, 2006.
    [2] Schmidt A, Gellersen HW, Beigl M, “A Wearable Context-Awareness Component,” Proceedings of the 3rd IEEE International Symposium on Wearable Computers, IEEE Computer Society, pp. 176, 1999.
    [3] Schou T, Gardner HJ, “A Wii remote, a game engine, five sensor bars and a virtual reality theatre,” Proceedings of the 19th Australasian conference on Computer-Human Interaction: Entertaining User Interfaces, Adelaide, Australia: ACM, pp. 231–234, 2007.
    [4] Lee S, Mase K, “Activity and Location Recognition Using Wearable Sensors,” . IEEE Pervasive Computing, Vol. 1, no. 3, pp. 24–32, 2002.
    [5] Pärkkä J, Ermes M, Korpipää P, Mäntyjärvi J, Peltola J, Korhonen I, “Activity classification using realistic data from wearable sensors,” IEEE Transactions on Information Technology in Biomedicine. Vol. 10, no. 1, pp. 119–128, 2006.
    [6] Ravi N, D N, Mysore P, Littman ML, “Activity recognition from accelerometer data,” proceedings of the seventeenth conference on innovative applications of artificial intelligence(IAAI), Vol. 3, PP. 1541–1546, 2005.
    [7] Bao L, Intille SS, “Activity Recognition from User-Annotated Acceleration Data ,” Proceedings of the 2nd International Conference on Pervasive Computing and Communications, Lecture Notes in Computer Science, Vol. 3001, pp. 1–17, 2004.
    [8] Huynh T, Schiele B, “Analyzing features for activity recognition,” Proceedings of the 2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and technologies. Grenoble, France: ACM, pp. 159-163, 2005.
    [9] Friedman N, Geiger D, Goldszmidt M, “Bayesian Network Classifiers,” Machine Learning, Vol. 29(2-3), pp. 131–163, 1997.
    [10] Jeong D, Kim S, Chung W, “Classification of Posture and Movement Using a 3-axis Accelerometer”, Proceedings of the 2007 International Conference on Convergence Information Technology, IEEE Computer Society, pp. 837–844, 2007.
    [11] Veltink PP, Bussmann J, Vries de IW, Martens W, Lummel van R, “Detection of static and dynamic activities using uniaxial accelerometers,” IEEE Transactions on Rehabilitation Engineering, Vol. 4(4), pp. 375–385, 1996.
    [12] Aminian, K, Robert, Ph, Jequier, E, Schutz, Y, “ Estimation of speed and incline of walking using neural network,” Instrumentation and Measurement Technology Conference(IMTC 1994), Conference Proceedings. 10th Anniversary. Advanced Technologies in I & M., 1994 IEEE, Vol. 1, pp. 160–162, 1994.
    [13] Iso T, Yamazaki K, “Gait analyzer based on a cell phone with a single three-axis accelerometer,” Proceedings of the 8th conference on Human-computer interaction with mobile devices and services. Helsinki, Finland: ACM, pp. 141–144, 2006.
    [14] Karantonis D, Narayanan M, Mathie M, Lovell N, Celler B, “Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring,” IEEE Transactions on Information Technology in Biomedicine, Vol. 10, no. 1, pp. 156–167, 2006.
    [15] Golding A, Lesh N, “Indoor navigation using a diverse set of cheap, wearable sensors,” Digest of Papers. Third International Symposium on Wearable Computers. San Francisco, CA, USA, p. 29–36, 1999.
    [16] Vail D, Veloso M, “Learning from Accelerometer Data on a Legged Robot,” In Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004.
    [17] Lombriser C, Bharatula NB, Roggen D, Tröster G, “On-body activity recognition in a dynamic sensor network,” Proceedings of the ICST 2nd international conference on Body area networks, Florence, Italy: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp. 1–6, 2007.
    [18] Figo D, Diniz P, Ferreira D, Cardoso J, “Preprocessing techniques for context recognition from accelerometer data,” Personal and Ubiquitous Computing, 2010.
    [19] Laerhoven KV, Aidoo KA, Lowette S. “Real-time Analysis of Data from Many Sensors with Neural Networks,” Proceedings of the 5th IEEE International Symposium on Wearable Computers, Los Alamitos, CA, USA, pp. 115–122, 2001.
    [20] Kern N, Schiele B, Schmidt A, “Recognizing context for annotating a live life recording,” Personal and Ubiquitous Computing, Vol. 11(4), pp. 251–-263, 2007.
    [21] Siewiorek D, Smailagic A, Furukawa J, Krause A, Moraveji N, Reiger K, Shaffer J, Fei Lung Wong, “SenSay: a context-aware mobile phone,” Proceedings of the 7th IEEE International Symposium on Wearable Computers, White Plains, NY, USA, pp. 248–249, 2003.
    [22] Cooley JW, Lewis PAW, Welch PD, “The fast Fourier transform algorithm: Programming considerations in the calculation of sine, cosine and Laplace transforms,” Journal of Sound and Vibration, Vol. 12(3), pp.315–337, 1970.
    [23] Rodgers JL, Nicewander WA, “Thirteen Ways to Look at the Correlation Coefficient,” The American Statistician, Vol. 42, no. 1, pp. 59–66, 1988.
    [24] Yang J, Wang J, Chen Y, “Using acceleration measurements for activity recognition: An effective learning algorithm for constructing neural classifiers” Pattern Recognition Letters , Vol. 29(16), pp. 2213–2220, 2008.
    [25] Healey J, Logan B, “Wearable Wellness Monitoring Using ECG and Accelerometer Data,” Proceedings of the 9th IEEE International Symposium on Wearable Computers, pp. 220–221, 2005.
    [26] Williamson DF, Pamuk E, Thun M, Flanders D, Byers T, Heath C, “Prospective study of intentional weight loss and mortality in never-smoking overweight US white women aged 40–64 years” Vol. 141(12) pp. 1128–1141, 1995.
    [27] Reaven GM, Lithell H, and Landsberg L, “Hypertension and associated metabolicabnormalities-the role of insulin resistance and the sympathoadrenal system,” N Engl J Med, pp. 334–374, 1996
    [28] Tong Zhang, Jue Wan, Liang Xu, Ping Liu, “Fall detection by wearable sensor and one-class SVM algorithm,” Lecture Notes in Control and Information Sciences, pp. 858–863, 2006.
    [29] Doscher J, Evangelist M, “Accelerometer Design and Applications,” Accelerometer Application Seminar by Analog Devices, 2000.
    [30] Eric Guenterberg, Allen Yang, Roozbeh Jafari, Ruzena Bajcsy, and Shankar Sasatry, “A Method for Extracting Temporal Parameters Based on Hidden Markov Models in Body Sensor Networks With Inertial Sensors”. IEEE Transactions on Information Technology in BioMedicine, Vol. 13, no. 6, pp. 1019–1030, 2009.
    [31] S.-W. Lee and K. Mase, “Recognition of walking behaviors for pedestrian navigation,” Proceedings of 2001 IEEE Conference on Control Applications (CCA01), pp. 1152–1155, 2001.
    [32] Chow, C. K., Liu, C. N. , "Approximating discrete probability distributions with dependence trees", IEEE Transactions on Information Theory, Vol. 14(3), pp. 462–467, 1968.
    [33] F. Foerster, M. Smeja, and J. Fahrenberg. “Detection of posture and motion byaccelerometry: a validation in ambulatory monitoring,” Computers in Human Behavior, Vol. 15(5), pp. 571–583, 1999.
    [34] 中華民國行政院衛生署:http://www.doh.gov.tw/

    下載圖示 校內:2013-08-11公開
    校外:2013-08-11公開
    QR CODE