簡易檢索 / 詳目顯示

研究生: 吳璟辰
Wu , Ching-Chen
論文名稱: 利用 3DEC 數值分析法模擬關子嶺邊坡破壞後行為之研究
Simulation of Post Failure Behavior of the Guanziling Slope Using by 3DEC
指導教授: 吳建宏
Wu, Jian-Hong
李德河
Lee, Der-Her
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 199
中文關鍵詞: 邊坡崩塌數值模擬離散元素法3DECUnity
外文關鍵詞: Slope collapse, Numerical simulation, Discrete element method, 3DEC, Unity
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,全球暖化與氣候變遷導致極端天氣事件日益頻繁,強降雨與颱風造成的邊坡破壞與土石災害屢見不鮮,且多在短時間內降下豪雨引發大量土石滑動,對生命財產安全構成重大威脅。本研究以台南關子嶺地區具崩塌潛勢之邊坡作為對象,針對其潛在滑動機制與崩塌範圍進行模擬與分析。研究採用離散元素法(Distinct Element Method, DEM)為基礎的三維數值分析軟體 3DEC(Three-Dimensional Distinct Element Code)建立邊坡模型,模擬重力作用下塊體沿弱面滑動之行為,並設定不同弱面摩擦角(10°、15°、20°)進行分析,以探討摩擦角變化對邊坡穩定性與崩塌範圍之影響。
    此外,為提升模擬結果之可讀性與應用性,本研究結合 Unity 軟體進行模擬成果之三維可視化,動態呈現滑動歷程、崩塌範圍及可能波及區域,強化地形理解與災害溝通能力。模擬結果顯示,三種摩擦角條件下均可能產生滑動現象,其中以上邊坡最先發生破壞,觀察點位移量明顯,少數塊體可滑動至下方白水溪地區。市道172線道路及鄰近聚落皆位於潛在影響範圍內,應列為優先監測與防護區域。
    綜合模擬結果與地形條件評估,關子嶺邊坡具顯著崩塌風險,建議未來應加強地質調查與動態監測,並將數值模擬成果作為災前風險管理與災後應變規劃之參考依據,降低地方災害並保障居民安全。

    In recent years, global warming and climate change have led to an increasing frequency of extreme weather events. Intense rainfall and typhoons have frequently triggered slope failures and debris disasters, often resulting in rapid mass movements within a short period and posing significant threats to lives and property. This study focuses on a potentially unstable slope in the Guanziling area of Tainan, Taiwan, aiming to simulate and analyze its potential sliding mechanism and failure extent.
    A three-dimensional slope model was established using the Three-Dimensional Distinct Element Code (3DEC), a numerical analysis software based on the Distinct Element Method (DEM). Simulations were conducted to evaluate slope failure behavior under gravitational loading, with sensitivity analysis performed by assigning different joint friction angles (10°, 15°, and 20°) to assess their influence on slope stability and collapse extent.
    To enhance the interpretability and applicability of the simulation results, Unity software was employed to create a 3D visualization of the failure process, including the sliding sequence, collapse extent, and potentially affected areas. The results indicate that slope failure may occur under all tested friction angles, with the upper slope being the first to experience displacement. Observation points showed significant movement, and in some cases, blocks slid down to the Baishuixi stream. Provincial Road 172 and nearby settlements fall within the affected zone and should be prioritized for monitoring and mitigation.
    Based on the simulation results and terrain assessment, the Guanziling slope exhibits a high risk of collapse. It is recommended that future efforts include more comprehensive geological investigations and real-time monitoring. The numerical modeling outcomes can serve as a reference for pre-disaster risk management and post-disaster response planning to enhance local disaster resilience and ensure public safety.

    摘要 I ABSTRACT II 致謝 VI 目錄 VII 圖目錄 X 表目錄 XIV 第一章 緒論 1 1-1 前言 1 1-2 研究背景 2 1-3 研究動機及目的 5 1-4 研究流程 6 1-5 研究大綱 8 第二章 文獻回顧 9 2-1 邊坡破壞分類 9 2-1-1 邊坡破壞類型 9 2-2 邊坡連續體之數值模擬方法 15 2-2-1 邊界元素法(Boundary Element Method, BEM) 15 2-2-2 有限元素法(Finite Element Method, FEM) 16 2-2-3 有限差分法(Finite Difference Method, FDM) 18 2-2-4 離散元素法(Discrete Element Method, DEM) 19 2-3 3DEC 中離散元素法的數值模擬原理 19 2-3-1 離散元素法接觸判定 19 2-3-2 計算循環步驟 24 2-3-3 接觸力計算 24 2-3-4 庫倫滑移模型 27 第三章 研究區域 28 3-1 區域位置及簡介 28 3-2 區域地形與地質 30 3-3 降雨概況 34 3-4 現地鑽探資料 37 3-5 現地傾斜管觀測資料 42 3-6 歷史災害 53 3-7 地表滑動跡象 54 3-8 近年研究成果 57 第四章 研究方法 60 4-1 3DEC模型 60 4-1-1 軟體介紹 60 4-1-2 軟體正確性驗證 60 4-1-3 3DEC模型建立 70 4-1-4 參數設置 85 4-2 UNITY模型 88 4-2-1 軟體介紹 88 4-2-2 數據整理與建立模型 89 第五章 研究成果 92 5-1 3DEC關子嶺滑動模型 92 5-2 3DEC關子嶺崩塌區模擬成果 94 5-2-1 弱面摩擦角10° 94 5-2-2 弱面摩擦角15° 106 5-2-3 弱面摩擦角20° 116 5-2-4 弱面摩擦角對邊坡滑動影響之統整分析 126 5-2-5 現地滑動跡象與模擬結果之對應分析 128 5-3 不同崩積層間距下滑動行為之比較 130 5-3-1 間距2-5 公尺 130 5-3-2 間距0.5-1 公尺 142 5-4 模擬電腦配備與運算時間 156 5-5 UNITY模擬成果 158 第六章 結論與建議 175 6-1 結論 175 6-2 建議 176 參考文獻 178

    [1] 中央氣象局 (2008),「台灣氣候變化統計報告」,辛在勤,初版,台北,台灣。
    [2] 行政院農業委員會水土保持局 (2017),水土保持手冊。
    [3] 吳憶珊 (2018),應用三維數值模擬技術探討地下水位與邊坡崩塌之研究,國立臺灣海洋大學河海工程研究所,碩士論文,基隆,台灣。
    [4] 吳建宏、謝秉軒 (2020)。高雄茂林區D048大規模崩塌潛勢區邊坡行為與預警之研究-萬山邊坡破壞後岩盤行為模擬之研究。科技部期中報告。
    [5] 何岱杰、張維恕、林慶偉、劉守恆 (2014)。應用數值地形及光學影像於潛在大規模崩塌地形特徵判釋,航測及遙測學刊,18(2),109-127。
    [6] 林啟文、洪國騰 (2012),五萬分之一臺灣地質圖,美濃,經濟部中央地質調查所,新北,台灣。
    [7] 范嘉程、馮道偉 (2003),以有限元素法探討暴雨時邊坡之穩定性,地工技術 ,95,61-74。
    [8] 青山工程顧問股份有限公司 (2021a), 110-112 年度溪北山區市道地滑邊坡監測及預警系統建置服務工作-第一次半年監測成果報告,台南市政府工務局,台南,台灣。
    [9] 青山工程顧問股份有限公司 (2021b),110-112 年度溪北山區市道地滑邊坡監測及預警系統建置服務工作地質探查調查分析報告書,台南市政府工務局,台南,台灣。
    [10] 青山工程顧問股份有限公司 (2024),113-115年度溪北山區市道地滑潛勢區監測及預警系統建置服務工作,台南市政府工務局,台南,台灣。
    [11] 洪聖峰 (2024),以3DEC模擬市道172線42k+300處邊坡破壞後行為之研究,國立成功大學土木工程研究所,碩士論文,台南,台灣。
    [12] 徐文杰、柳鈞元、黃韋凱、蕭富元 (2022),利用數值地形資料建立3DEC數值模型及其應用於邊坡穩定分析,中興工程顧問社季刊,156,67-77。
    [13] 陳宏宇 (1998) ,山崩,地球科學園地,第6期,12-21。
    [14] 陳文聰 (2013) ,172 線 48k 崩塌機制及治理對策之研究,國立中興大學水土保持研究所,碩士論文,台中,台灣。
    [15] 張國欽、葉信富、林榮潤、陳耐錦、柯建仲、陳榮俊(2019),結合鑽探與地球物理方法調查八寶寮崩塌地之水文地質特性,中華水土保持學報,50(2),73-88。
    [16] 張祐霖(2024),臺灣西南部山區邊坡穩定性探討與利用雷達回波及降雨資料建立邊坡災害預警系統,國立成功大學土木工程研究所,碩士論文,台南,台灣。
    [17] 黃獻廷、葉信富、柯建仲(2021),未飽和土壤單峰與雙峰水力特性對邊坡穩定性影響之研究,農業工程學報,67(3),51-63。
    [18] 楊樹榮、林忠志、鄭錦桐、潘國樑、蔡如君、李正利 (2011),臺灣常用山崩分類系統,第14屆大地工程學術研究討論會,桃園,台灣。
    [19] 鍾佩蓉、黃全謚、簡榮興、許志豪、曹鼎志(2015), 「土石流潛勢溪流現地調查及其防災之應用」,中興工程,126期,21-30。
    [20] 鍾明劍、陳建新、李璟芳、黃韋凱、譚志豪(2016),潛在大規模崩塌地對鄰近聚落衝擊之調查與評估方法,中華水土保持學報,47(3),122-134。
    [21] 魏佳韻、游才銘、徐力平、趙紹錚、賴思翰、楊浩 (2020),國道邊坡地錨既存荷重與邊坡穩定關聯性數值模擬,第18屆大地工程研討會,屏東,台灣。
    [22] Aaron, J. and McDougall, S. (2019). Rock avalanche mobility: The role of path material, Engineering Geology, 257, 105126.
    [23] Agliardi, F., Crosta, G., and Zanchi, A. (2001). Structural constraints on deep-seated slope deformation kinematics. Engineering Geology, 59(1-2), 83-102.
    [24] Bhavikatti, S. S. (2005). Finite Element Analysis. New Age International Publishers, New delhi, India.
    [25] Brideau, M.A., Pedrazzini, A., Stead, D., Froese, C., Joboyedoff, M., and Zeyl, D.V. (2011). Three-dimensional slope stability analysis of South Peak, Crowsnest Pass, Alberta, Canada. Landslides, 8, 139-158.
    [26] Cheng, A. H.-D., and Cheng, D. T. (2005). Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements, 29(3), 268-302.
    [27] Crosta, G. B., Imposimato, S., and Roddeman, D. G. (2003). Numerical modelling of large landslides stability and runout. Hazards Earth Syst. Sci., 3, 523-538.
    [28] Cruden, D. (1991). Simple definition of a landslide. Bulletin of the International Association of Engineering Geology - Bulletin de l'Association Internationale de Géologie de l'Ingénieur, 43.
    [29] Cruden, D.M., Varnes, D.J.,1996, Landslide Types and Processes, Transportation Research Board, U.S. National Academy of Sciences, Special Report, 247: 36-75.
    [30] Cundall, P. A., and Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47 65.
    [31] Cundall, P. A. (1988). Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3), 107-116.
    [32] Cundall,P. A., and Hart, R. D. (1992). Numerical modelling of discontinua. Engineering Computations, 9(2), 101-113.
    [33] de Ojeda, P. S.,Sanz, E., Galindo, R. (2021). Historical reconstruction and evolution of the large landslide of Inza (Navarra, Spain). Natural Hazards, 109(3), 2095-2126.
    [34] European Academies Science Advisory Council(2018), 「Extreme weather events in Europe: Preparing for climate change adaptation: an update on EASAC's 2013 study」, Extreme Weather Events.
    [35] Hungr O., Leroueil S., Picarelli L., 2014, The Varnes classification of landslide types, an update, Landslide, 11, 167-194.
    [36] Hart, R., Cundall, P. A., and Lemos, J. (1988). Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(3), 117-125.
    [37] Havaej, M., Coggan, J., Stead, D. and Elmo, D. (2016). A combined remote sensing–numerical modelling approach to the stability analysis of Delabole Slate Quarry, Cornwall, UK. Rock Mechanics and Rock Engineering volume, 49, 1227–1245.
    [38] Highland, L., and Bobrowsky, P. (2008). The Landslide Handbook–A Guide to Understanding Landslides. U.S. Geological Survey, Colorado, USA.
    [39] Itasca. (2016). Three Dimensional Distinct Element Code version 5.2 ; A manual documentation. Itasca Consulting Group, Inc., Minnesota, USA.
    [40] Itasca. (2017). 3DEC User's Guide. Itasca Consulting Group, Inc., Minnesota, USA.
    [41] Kuo, C. Y., Tai, Y. C., Chen, C. C., Chang, K. J., Siau, A. Y., Dong, J. J., and Lee, C. T. (2011). The landslide stage of the Hsiaolin catastrophe: Simulation and validation. Journal of Geophysical Research: Earth Surface, 116(F4), 1-16.
    [42] LeVeque, R. J. (2005). Finite Difference Methods for Differential Equations. University of Washington, Society for Industrial and Applied Mathematics, Philadelphia, USA.
    [43] Lin, C. H., and Lin, M. L. (2015). Evolution of the large landslide induced by Typhoon Morakot: a case study in the Butangbunasi River, southern Taiwan using the discrete element method. Engineering Geology, 197, 172-187.
    [44] Liu, B., He, K., Han, M., Hu, X., Wu, T., Wu, M., and Ma, G. Dynamic process simulation of the Xiaogangjian rockslide occurred in shattered mountain based on 3DEC and DFN. Computers and Geotechnics, 134, 104122.
    [45] Lo, C. M., Li, H. H., and Ke, C. C. (2016). Kinematic model of a translational slide in the Cidu section of the Formosan freeway. Landslides, 13(1), 141-151.
    [46] Lu, C.-Y., Tang, C.-L., Chan, Y.-C., Hu, J.-C., and Chi, C.-C. (2014). Forecasting landslide hazard by the 3D discrete element method: A case study of the unstable slope in the Lushan hot spring district, central Taiwan. Engineering Geology, 183, 14-30.
    [47] U.S. Geological Survey (2004). Landslide Types and Processes. USGS Publications Repository, Colorado, USA.
    [48] Varnes, D. J. (1978). Slope Movement Types and Processes. Transportation Research Board, Washington, USA.
    [49] Wang, H., Huang, J., Huang, X., and He, Z. (2021). A method of using Unity3D to simulate the whole process of three-dimensional movement of rockfall. Geomatics and Information Science of Wuhan University, 2021, 46(5), 659-671.
    [50] Wang, Z., Jiang, L., Xia, Y., Pei, Y., and Lin, M. (2013). Numerical analysis of stratified rock slope stability based on 3DEC. Applied Mechanics and Materials, 454, 133-139.
    [51] Wu, J.H., Lin, W.K., and Hu, H.T. (2018). Post-failure simulations of a large slope failure using 3DEC: The Hsien –du-shan slope, Engineering Geology, 242, 92-107.
    [52] 經濟部水利署水文資網 https://gweb.wra.gov.tw/HydroInfoCore/
    [53] 交通部中央氣象署https://www.cwa.gov.tw/V8/C/

    無法下載圖示 校內:2030-07-15公開
    校外:2030-07-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE