簡易檢索 / 詳目顯示

研究生: 林武弘
Lin, Wu-Hung
論文名稱: 以模擬最佳化考慮績效指標變異之手術預定開始時間問題
Using Simulation Optimization to Determine Surgery Planned Start Times Considering Variation of Performance Measure
指導教授: 蔡青志
Tsai, Shing-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 69
中文關鍵詞: 手術之預定開始時間模擬最佳化變異數篩選排序與選擇程序效用函數
外文關鍵詞: Surgery planned start time, Simulation-based optimization, Variance Screening, Ranking and selection, Multiple attribute utility theory
相關次數: 點閱:120下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 手術預定開始時間問題在醫療領域中是一個重要的議題,其策略主要為如何 維持各績效之間的平衡,若醫院擁有良好的手術排程策略,將能有效地降低成本進而提高利潤。因此近年來,手術排程問題逐漸被重視且以各種不同的方式進行求解,而其中最重要的便是決定各手術的預定開始時間。本研究探討手術延遲時間、手術室閒置時間以及手術室超時共三個績效指標,並透過權重加成法整合至目標式。另外將透過決定手術預定開始時間區段以簡化問題求解難度。手術耗時屬於隨機性的因子,一般的數學模式難以處理這些具有隨機性因子的問題。因此本研究運用模擬最佳化發展了一種結合式演算法來求解手術排程問題中的預定開始時間組合。透過結合了多個不同的排序與選擇程序,針對現有之候選解集合,逐步地篩選進而挑選出最終解。另外由於績效指標之變異程度在醫療環境當中影響重大,本研究將排程總成本之變異數納入考量,希望藉由一變異數門檻值篩選出風險程度較低的排程,並利用主觀者的效用函數,將各績效指標整合,進而挑出最終解。在變異篩選的部分,本研究提供兩種篩選程序(VSP-R與VSP-NR),分別可應用在具有參考系統以及門檻定值的情況下。透過結合式演算法,可以挑選出總成本變異數較小的手術預定開始時間組合。在變異數篩選當中,最終解之品質將會受到參考解或是門檻值設定所影響。在兩方法比較當中,VSP-R求解速率較慢但其在實際情況中較容易應用,而VSP-NR有較快的求解速率但其需要設定一確切的門檻值。在決定手術預定開始時間的部分,可以透過設定較長的時間區段長度,以利演算法在短時間內求得一個相對還不錯的最佳解。

    We consider a stochastic optimization model for a surgical scheduling problem when there is a single operating room. The goal is to determine the optimal start times of multiple elective surgeries within a single day, where the term “optimal” is defined as the largest surgically related utility value while achieving the given threshold defined by the performance variation of a reference solution. The optimization model involves quantities, such as expectation and variance formulations, that are analytically intractable, which implies that traditional mathematical programming techniques cannot be directly applied. Therefore, we develop a combined approach which is a fully sequential procedure using variance screening procedure in the first phase, and then employing the multiple attribute utility theory to select the best solution in the second phase. The numerical experiments show that the proposed algorithm performs well in searching for a promising solution in a reasonable amount of time.

    目 錄 中文摘要 i 英文延伸摘要 ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究架構 4 第二章 文獻回顧 5 2.1 手術排程問題 5 2.1.1 常見績效指標 6 2.1.2 問題設定與求解方法 7 2.2 模擬最佳化(Optimization via Simulation; OvS) 10 2.3 排序與選擇程序(Ranking and Selection Procedures) 12 2.3.1 Restarting 程序 14 2.3.2 變異數篩選程序 17 2.3.3 多屬性效用之排序與選擇程序 18 2.4 小結 21 第三章 研究方法 22 3.1 資料整理 22 3.2 手術排程問題之描述與模型建構 23 3.3 變異數限制與效用函數值挑選演算法 28 3.3.1 具參考解之變異數篩選 (VSP-R) 30 3.3.2 無參考解之變異數篩選 (VSP-NR) 31 3.3.3 多屬性效用轉換與效用函數值挑選 32 3.3.4 演算法整體流程 34 第四章 實驗設設計計與分析 37 4.1 問題環境分析 37 4.1.1 手術排程比較 38 4.1.2 排程成本績效值比較 43 4.2 實驗評估 48 4.2.1 實驗參數設定 50 4.3 實驗結果 51 4.3.1 啟發式排序方法 51 4.3.2 各情境實驗結果 53 4.3.3 變動時間區段數量 55 4.3.4 VSP-R 與 VSP-NR 59 第五章 結論與未來研究方向 61 5.1 結論 61 5.2 未來研究方向 62 參考文獻 64 A 附錄 69 A.1 解空間數量 69 表 目 錄 4.1 模型參數設定 39 4.2 鬆散與緊湊手術排程之預定開始時間設定 39 4.3 各情境手術參數設定 40 4.4 模型參數與對數、截斷常態分配設定 45 4.5 總成本績效值比較(對數常態分配;截斷常態分配) 46 4.6 手術排程各別績效指標之績效值(對數常態分配;截斷常態分配) 47 4.7 手術耗時參數設定(情境一至三) 50 4.8 手術環境參數設定 50 4.9 啟發式排序方法比較之演算法參數設定 (VSP-NR) 52 4.10 啟發式排序方法比較 (VSP-NR) 52 4.11 各情境實驗之演算法參數設定(VSP-R; IV) 55 4.12 各情境實驗結果 (VSP-R; IV) 55 4.13 變動時間區段數量之演算法參數設定 (VSP-R; IV) 58 4.14 變動時間區段數量之實驗結果 (AUF_R=0.8161, AVC_R=382,398) 58 4.15 在h=24下挑選之十個較佳之最終解 (經10^6抽樣) 58 4.16 VSP-R & VSP-NR 比較之參數設定 (由 IV 排序) 59 4.17 VSP-R & VSP-NR 比較之實驗結果 60 A.1 解空間之數量 69 圖 目 錄 2.1 手模擬模型之輸入與產出示意圖 10 2.2 模擬最佳化之模型架構示意圖 11 3.1 手術耗時配適結果 (引用自 郭澄蘊 [1] ) 23 3.2 績效指標示意圖 25 3.3 變異數限制與效用函數值挑選演算法示意圖 36 4.1 情境一手術排程績效值比較圖 40 4.2 情境二手術排程績效值比較圖 41 4.3 情境三手術排程績效值比較圖 41 4.4 情境四手術排程績效值比較圖 42 4.5 情境五手術排程績效值比較圖 42

    [1] 郭澄蘊,以模擬最佳化求解考慮手術順序與開始時間之排程問題。國立成功大學工業與資訊管理學系碩士論文(2019)。
    [2] 蘇聖煒,系統模擬結合樣本平均近似法求解手術排程問題。國立成功大學工業與資訊管理學系碩士論文(2016)。
    [3] Andersson, J. (2000). A survey of multiobjective optimization in engineering design. LiTH-IKP-R-1097, Technical Report. Department of Mechanical Engineering, Linko¨ping University, Linko¨ping, Sweden.
    [4] Andrado´ttir, S., & Kim, S.H. (2010). Fully sequential procedures for comparing constrained systems via simulation. Naval Research Logistics, 57(5), 403–421.
    [5] Astaraky, D., & Patrick, J. (2015). A simulation based approximate dynamic programming approach to multi-class, multi-resource surgical scheduling. European Journal of Operational Research, 245(1), 309–319.
    [6] Augusto, V., Xie, X., & Perdomo, V. (2010). Operating theatre scheduling with patient recovery in both operating rooms and recovery beds. Computers and Industrial Engineering, 58(2), 231–238.
    [7] Batur, D., & Kim, S.H. (2006). Fully sequential selection procedures with parabolic boundary. IIE Transactions, 38(9), 749–764.
    [8] Batur, D., & Kim, S.H. (2010). Finding feasible systems in the presence of constraints on multiple performance measures. ACM Transactions on Modeling and Computer Simulation, 20(3), 1–26.
    [9] Batur, D., Wang, L., & Choobineh, F.F. (2018). Methods for system selection based on sequential mean–variance analysis. INFORMS Journal on Computing, 30(4), 724–738.
    [10] Bechhofer, R.E. (1954). A single-sample multiple decision procedure for ranking means of normal populations with known variances. The Annals of Mathematical Statistics, 25(1), 16–39.
    [11] Belie¨n, J., Demeulemeester, E., & Cardoen, B. (2009). A decision support system for cyclic master surgery scheduling with multiple objectives. Journal of Scheduling, 12(2), 147–161.
    [12] Butler, J., Morrice, D.J., & Mullarkey, P.W. (2001). A multiple attribute utility theory approach to ranking and selection. Management Science, 47(6), 800–816.
    [13] Cardoen, B., Demeulemeester, E., & Belie¨n, J. (2010). Operating room planning and scheduling: A literature review. European Journal of Operational Research, 201(3), 921–932.
    [14] Cardoen, B., Demeulemeester, E., & Belie¨n, J. (2009). Optimizing a multiple objective surgical case sequencing problem. International Journal of Production Economics, 119(2), 354–366.
    [15] Childers, C.P., & Maggard-Gibbons, M. (2018). Understanding costs of care in the operating room. JAMA Surgery, 153(4):e176233.
    [16] Denton, B., Viapiano, J., & Vogl, A. (2007). Optimization of surgery sequencing and scheduling decisions under uncertainty. Health Care Management Science, 10(1), 13–24.
    [17] Erdem, E., Qu, X., & Shi, J. (2012). Rescheduling of elective patients upon the arrival of emergency patients. Decision Support Systems, 54(1), 551–563.
    [18] Ferrand, Y.B., Magazine, M.J., & Rao, U.S. (2014). Managing operating room efficiency and responsiveness for emergency and elective surgeries - A literature survey. IIE Transaction on Healthcare Systems Engineering, 4(1), 49–64.
    [19] Freeman, N.K., Melouk, S.H., & Mittenthal, J. (2016). A scenario-based approach for operating theater scheduling under uncertainty. Manufacturing and Service Operations Management, 18(2), 245–261.
    [20] Guerriero, F., & Guido, R. (2011). Operational research in the management of the operating theatre: A survey. Health Care Management Science, 14(1), 89–114.
    [21] Gul, S., Denton, B.T., Fowler, J.W., & Huschka, T. (2011). Bi-criteria scheduling of surgical services for an outpatient procedure center. Production and Operations Management, 20(3), 406–417.
    [22] Hammond, J.S., Keeney, R.L., & Raiffa, H. (1998). Even swaps: A rational method for making trade-offs. Harvard Business Review, 76(2), 137–149.
    [23] Hong, L.J., & Nelson, B.L. (2009). A brief introduction to optimization via simulation. In: Proceedings of the 2009 Winter Simulation Conference, (pp. 75–85).
    [24] Hunter, S.R., Applegate, E.A., Arora, V., Chong, B., Cooper, K., Rinco´n-Guevara, O., & Vivas-Valencia, C. (2019). An introduction to multi-objective simulation optimization. ACM Transactions on Modeling and Computer Simulation, 29(1), 7:1–7:36.
    [25] Jung, S., Pinedo M., Sriskandarajah, C., & Tiwari, V. (2019). Scheduling elective surgeries with emergency patients at shared operating rooms. Production and Operations Management, 28(6), 1407–1430.
    [26] Lamiri, M., Xie, X., Dolgui, A., & Grimaud, F. (2008). A stochastic model for operating room planning with elective and emergency demand for surgery. European Journal of Operational Research, 185(3), 1026–1037.
    [27] May, J.H., Spangler, W.E., Strum, D.P., & Vargas, L.G. (2011). The surgical scheduling problem: Current research and future opportunities. Production and Operations Management, 20(3), 392–405.
    [28] May, J.H., Spangler, W.E., Strum, D.P., & Vargas, L.G. (2000). Fitting the lognormal distribution to surgical procedure times. Decision Sciences, 31(1), 129–148.
    [29] Min, D., & Yih, Y. (2010). Scheduling elective surgery under uncertainty and downstream capacity constraints. European Journal of Operational Research, 206(3), 642–654.
    [30] Paulson, E. (1964). Sequential estimation and closed sequential decision procedures. The Annals of Mathematical Statistics, 35(3), 1048–1058.
    [31] Pichitlamken, J., Nelson, B.L., & Hong, L.J. (2006). A sequential procedure for neighborhood selection-of-the-best in optimization via simulation. European Journal of Operational Research, 173(1), 283–298.
    [32] Qu, X., Rardin, R.L., & Williams, J.A.S. (2012). A mean-variance model to optimize the fixed versus open appointment percentages in open access scheduling systems. Decision Support Systems, 53(3), 554–564.
    [33] Saadouli, H., Jerbi, B., Dammak, A., Masmoudi, L., & Bouaziz, A. (2015). A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department. Computers and Industrial Engineering, 80, 72–79.
    [34] Sun, Y. & Li, X. (2013). Response surface optimization of surgery start times in a single operating room using designed simulation experiments. International Journal of Healthcare Technology and Management, 14(1), 61–72.
    [35] Testi, A., Tanfani, E., & Torre, G. (2007). A three-phase approach for operating theatre schedules. Health Care Management Science, 10(2), 163–172.
    [36] Trinkoff, A., Geiger, B.J., Brady, B., Lipscomb, J., & Muntaner, C. (2006). How long and how much are nurses now working. American Journal of Nursing, 106(4), 60–71.
    [37] Yang, K.K., Lau, M.L., & Quek, S.A. (1998). A new appointment rule for a single- server, multiple-customer service system. Naval Research Logistics, 45(3), 313–326.
    [38] Zhang, B., Murali, P., Dessouky, M.M., & Belson, D. (2009). A mixed integer programming approach for allocating operating room capacity. Journal of the Operational Research Society, 60(5), 663–673.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE