| 研究生: |
沈領昌 Shen, Ling-Chang |
|---|---|
| 論文名稱: |
基質金屬蛋白酶在口腔腫瘤之研究 The Study of Matrix Metalloproteinases (MMPs)in Oral Neoplasm |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 牙釉質母細胞瘤 、基質金屬蛋白酶 、富含半胱氨酸的酸性分泌蛋白 、口腔鱗狀細胞癌 、鹽酸強力黴素 、異種異體移植 、裸鼠 |
| 外文關鍵詞: | ameloblastoma, matrix metalloproteinases, osteonectin, secreted protein acidic and rich in cysteine, oral squamous cell carcinoma, doxycycline, xenograft, nude mice |
| 相關次數: | 點閱:124 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
好發於口腔環境的腫瘤可以簡單的區分為齒源性腫瘤與非齒源性腫瘤。其中牙釉質母細胞瘤是最常見的良性齒源性腫瘤,口腔鱗狀細胞癌則是最常見的惡性非齒源性腫瘤。二者來源與屬性不同,但臨床上同樣表現易復發且具侵襲性等生物學特性。腫瘤細胞增殖向外侵襲需降解破壞周圍正常組織與細胞外基質,同時需新生血管以提供腫瘤組織營養。基質金屬蛋白酶在此系列過程中擔任重要調節角色;因此若能進一步了解基質金屬蛋白酶與其它蛋白質合作的相關性,應該有助於了解治療反應的機制。首先我們分析出牙釉質母細胞瘤中不正常表現富含半胱氨酸的酸性分泌蛋白,並提出其與 基質金屬蛋白酶-9協同促進血管新生,增加腫瘤侵襲能力假說。另一方面我們嘗試利用鹽酸強力黴素(Doxycycline hyclate)抑制基質金屬蛋白酶-2與-9的特性來抑制口腔鱗狀細胞癌細胞株製造基質金屬蛋白酶-2與-9,並進一步於異種異體移植腫瘤裸鼠模式動物中證實的確可以抑制腫瘤生長。同時得知在鹽酸強力黴素對口腔鱗狀細胞癌細胞當中基質金屬蛋白酶-2的抑制作用發生於轉錄後的層級;基質金屬蛋白酶-9的抑制作用發生於轉錄的層級。以上結果能提供我們未來在治療口腔腫瘤時能有更深入的考量,同時能有更多輔助療法選擇以彌補現有療法之不足,提高患者生存機會與生活品質。
Broadly speaking, oral neoplasm includes odontogenic and nonodontogenic tumors. Ameloblastoma is the most frequent odontogenic tumor whereas oral squamous cell carcinoma is the most common malignant nonodontogenic tumor. Both of them are characterized by plays an essential role in tumor progression. Understanding the interaction of MMPs with other related proteins has emerged as a necessary step towards understanding the mechanism of the therapeutic response.
In this study, we first characterize the pathologic expression of osteonectin/secreted protein acidic and rich in cysteine (SPARC) in ameloblastoma and hypothesize that SPARC works together with MMP-9 in angiogenesis for tumor invasion. On the other hand, doxycycline (Dox) is a MMP inhibitor for dental use. We used an in vitro model of a human tongue SCC cell line to demonstrate that inhibitory action of Dox on the reduced expression of MMP-9 at the transcriptional level and MMP-2 at the post-transcriptional level. Anti-invasive and anti-migration effects are also confirmed under such condition. Moreover, in vivo anti-tumor effect of Dox has been confirmed in a xenograft nude mice model.
Our data further provide evidence that MMPs play a critical role for tumor invasiveness in oral neoplasm. Furthermore, MMP inhibitor such as Dox may act as an adjuvant therapy for anti-invasive treatment of oral neoplasm.
1. Kim SH, Cho NH, Kim K, Lee JS, Koo BS, Kim JH, et al. Correlations of oral tongue cancer invasion with matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) expression. J Surg Oncol 2006;93:330-7.
2. Hsu S, Singh B, Schuster G. Induction of apoptosis in oral cancer cells: agents and mechanisms for potential therapy and prevention. Oral Oncol 2004;40:461-73.
3. Psyrri A, Kwong M, DiStasio S, Lekakis L, Kassar M, Sasaki C, et al. Cisplatin, fluorouracil, and leucovorin induction chemotherapy followed by concurrent cisplatin chemoradiotherapy for organ preservation and cure in patients with advanced head and neck cancer: long-term follow-up. J Clin Oncol 2004;22:3061-9.
4. Spiro RH, Alfonso AE, Farr HW, Strong EW. Cervical node metastasis from epidermoid carcinoma of the oral cavity and oropharynx. A critical assessment of current staging. Am J Surg 1974;128:562-7.
5. Melrose RJ. Benign epithelial odontogenic tumors. Semin Diagn Pathol 1999;16:271-87.
6. Risau W. Mechanisms of angiogenesis. Nature 1997;386:671-4.
7. Jones JL, Walker RA. Control of matrix metalloproteinase activity in cancer. J Pathol 1997;183:377-9.
8. Tai IT, Tang MJ. SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat 2008;11:231-46.
9. Kalluri R. Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003;3:422-33.
10. Rubins JB, Charboneau D, Alter MD, Bitterman PB, Kratzke RA. Inhibition of mesothelioma cell growth in vitro by doxycycline. J Lab Clin Med 2001;138:101-6.
11. Lokeshwar BL, Selzer MG, Zhu BQ, Block NL, Golub LM. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int J Cancer 2002;98:297-309.
12. Nagase H, Woessner JF, Jr. Matrix metalloproteinases. J Biol Chem 1999;274:21491-4.
13. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003;92:827-39.
14. Sorsa T, Tjaderhane L, Salo T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis 2004;10:311-8.
15. Roy R, Yang J, Moses MA. Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J Clin Oncol 2009;27:5287-97.
16. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Osteonectin, a bone-specific protein linking mineral to collagen. Cell 1981;26:99-105.
17. Framson PE, Sage EH. SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 2004;92:679-90.
18. Bornstein P, Sage EH. Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 2002;14:608-16.
19. Bradshaw AD, Sage EH. SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury. J Clin Invest 2001;107:1049-54.
20. McClung HM, Thomas SL, Osenkowski P, Toth M, Menon P, Raz A, et al. SPARC upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG glioma cells. Neurosci Lett 2007;419:172-7.
21. Lien HC, Hsiao YH, Lin YS, Yao YT, Juan HF, Kuo WH, et al. Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial-mesenchymal transition. Oncogene 2007;26:7859-71.
22. Sansom OJ, Mansergh FC, Evans MJ, Wilkins JA, Clarke AR. Deficiency of SPARC suppresses intestinal tumorigenesis in APCMin/+ mice. Gut 2007;56:1410-4.
23. Choi P, Jordan CD, Mendez E, Houck J, Yueh B, Farwell DG, et al. Examination of oral cancer biomarkers by tissue microarray analysis. Arch Otolaryngol Head Neck Surg 2008;134:539-46.
24. Socha MJ, Said N, Dai Y, Kwong J, Ramalingam P, Trieu V, et al. Aberrant promoter methylation of SPARC in ovarian cancer. Neoplasia 2009;11:126-35.
25. Chlenski A, Liu S, Crawford SE, Volpert OV, DeVries GH, Evangelista A, et al. SPARC is a key Schwannian-derived inhibitor controlling neuroblastoma tumor angiogenesis. Cancer Res 2002;62:7357-63.
26. Zakeri B, Wright GD. Chemical biology of tetracycline antibiotics. Biochem Cell Biol 2008;86:124-36.
27. Sapadin AN, Fleischmajer R. Tetracyclines: nonantibiotic properties and their clinical implications. J Am Acad Dermatol 2006;54:258-65.
28. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 1999;13:781-92.
29. Reichart PA, Philipsen HP, Sonner S. Ameloblastoma: biological profile of 3677 cases. Eur J Cancer B Oral Oncol 1995;31B:86-99.
30. Becelli R, Carboni A, Cerulli G, Perugini M, Iannetti G. Mandibular ameloblastoma: analysis of surgical treatment carried out in 60 patients between 1977 and 1998. J Craniofac Surg 2002;13:395-400; discussion 00.
31. Lau SL, Samman N. Recurrence related to treatment modalities of unicystic ameloblastoma: a systematic review. Int J Oral Maxillofac Surg 2006;35:681-90.
32. Mehlisch DR, Dahlin DC, Masson JK. Ameloblastoma: a clinicopathologic report. J Oral Surg 1972;30:9-22.
33. Scully C, Bagan J. Oral squamous cell carcinoma: overview of current understanding of aetiopathogenesis and clinical implications. Oral Dis 2009;15:388-99.
34. Chen YK, Huang HC, Lin LM, Lin CC. Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral Oncol 1999;35:173-9.
35. Zemann W, Feichtinger M, Kowatsch E, Karcher H. Extensive ameloblastoma of the jaws: surgical management and immediate reconstruction using microvascular flaps. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:190-6.
36. Gortzak RA, Latief BS, Lekkas C, Slootweg PJ. Growth characteristics of large mandibular ameloblastomas: report of 5 cases with implications for the approach to surgery. Int J Oral Maxillofac Surg 2006;35:691-5.
37. Noel A, Jost M, Maquoi E. Matrix metalloproteinases at cancer tumor-host interface. Semin Cell Dev Biol 2008;19:52-60.
38. Pilcher BK, Sudbeck BD, Dumin JA, Welgus HG, Parks WC. Collagenase-1 and collagen in epidermal repair. Arch Dermatol Res 1998;290 Suppl:S37-46.
39. Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC. The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 1997;137:1445-57.
40. Masson V, de la Ballina LR, Munaut C, Wielockx B, Jost M, Maillard C, et al. Contribution of host MMP-2 and MMP-9 to promote tumor vascularization and invasion of malignant keratinocytes. FASEB J 2005;19:234-6.
41. Clark CJ, Sage EH. A prototypic matricellular protein in the tumor microenvironment--where there's SPARC, there's fire. J Cell Biochem 2008;104:721-32.
42. Ledda MF, Adris S, Bravo AI, Kairiyama C, Bover L, Chernajovsky Y, et al. Suppression of SPARC expression by antisense RNA abrogates the tumorigenicity of human melanoma cells. Nat Med 1997;3:171-6.
43. Pinheiro JJ, Freitas VM, Moretti AI, Jorge AG, Jaeger RG. Local invasiveness of ameloblastoma. Role played by matrix metalloproteinases and proliferative activity. Histopathology 2004;45:65-72.
44. Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, et al. Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 2005;23:953-64.
45. Arnold SA, Mira E, Muneer S, Korpanty G, Beck AW, Holloway SE, et al. Forced expression of MMP9 rescues the loss of angiogenesis and abrogates metastasis of pancreatic tumors triggered by the absence of host SPARC. Exp Biol Med (Maywood) 2008.
46. Kramer IR, Pindborg JJ, Shear M. The WHO Histological Typing of Odontogenic Tumours. A commentary on the Second Edition. Cancer 1992;70:2988-94.
47. Hsu SM, Raine L, Fanger H. Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 1981;29:577-80.
48. Krajewska M, Fenoglio-Preiser CM, Krajewski S, Song K, Macdonald JS, Stemmerman G, et al. Immunohistochemical analysis of Bcl-2 family proteins in adenocarcinomas of the stomach. Am J Pathol 1996;149:1449-57.
49. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159-74.
50. Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516.
51. Okada Y, Gonoji Y, Nakanishi I, Nagase H, Hayakawa T. Immunohistochemical demonstration of collagenase and tissue inhibitor of metalloproteinases (TIMP) in synovial lining cells of rheumatoid synovium. Virchows Arch B Cell Pathol Incl Mol Pathol 1990;59:305-12.
52. Kubota T, Nomura T, Takahashi T, Hara K. Expression of mRNA for matrix metalloproteinases and tissue inhibitors of metalloproteinases in periodontitis-affected human gingival tissue. Arch Oral Biol 1996;41:253-62.
53. Liotta LA, Stetler-Stevenson WG. Metalloproteinases and cancer invasion. Semin Cancer Biol 1990;1:99-106.
54. Chiang YY, Tsai MH, Lin TY, Chiang IP. Expression profile of metastasis-related genes in invasive oral cancers. Histol Histopathol 2008;23:1213-22.
55. Yang SF, Yang WE, Kuo WH, Chang HR, Chu SC, Hsieh YS. Antimetastatic potentials of flavones on oral cancer cell via an inhibition of matrix-degrading proteases. Arch Oral Biol 2008;53:287-94.
56. Kerrigan JJ, Mansell JP, Sandy JR. Matrix turnover. J Orthod 2000;27:227-33.
57. Manenti L, Paganoni P, Floriani I, Landoni F, Torri V, Buda A, et al. Expression levels of vascular endothelial growth factor, matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 and 2 in the plasma of patients with ovarian carcinoma. Eur J Cancer 2003;39:1948-56.
58. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005;436:518-24.
59. Kumamoto H, Yamauchi K, Yoshida M, Ooya K. Immunohistochemical detection of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in ameloblastomas. J Oral Pathol Med 2003;32:114-20.
60. Kaplan RN, Riba RD, Zacharoulis S, Bramley AH, Vincent L, Costa C, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820-7.
61. Holland PW, Harper SJ, McVey JH, Hogan BL. In vivo expression of mRNA for the Ca++-binding protein SPARC (osteonectin) revealed by in situ hybridization. J Cell Biol 1987;105:473-82.
62. Reichert T, Storkel S, Becker K, Fisher LW. The role of osteonectin in human tooth development: an immunohistological study. Calcif Tissue Int 1992;50:468-72.
63. Tremble PM, Lane TF, Sage EH, Werb Z. SPARC, a secreted protein associated with morphogenesis and tissue remodeling, induces expression of metalloproteinases in fibroblasts through a novel extracellular matrix-dependent pathway. J Cell Biol 1993;121:1433-44.
64. Shankavaram UT, DeWitt DL, Funk SE, Sage EH, Wahl LM. Regulation of human monocyte matrix metalloproteinases by SPARC. J Cell Physiol 1997;173:327-34.
65. Gilles C, Bassuk JA, Pulyaeva H, Sage EH, Foidart JM, Thompson EW. SPARC/osteonectin induces matrix metalloproteinase 2 activation in human breast cancer cell lines. Cancer Res 1998;58:5529-36.
66. Kunigal S, Gondi CS, Gujrati M, Lakka SS, Dinh DH, Olivero WC, et al. SPARC-induced migration of glioblastoma cell lines via uPA-uPAR signaling and activation of small GTPase RhoA. Int J Oncol 2006;29:1349-57.
67. Sasaki T, Gohring W, Mann K, Maurer P, Hohenester E, Knauper V, et al. Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J Biol Chem 1997;272:9237-43.
68. Kumamoto H, Ohki K, Ooya K. Association between vascular endothelial growth factor (VEGF) expression and tumor angiogenesis in ameloblastomas. J Oral Pathol Med 2002;31:28-34.
69. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18:4-25.
70. Kato Y, Lewalle JM, Baba Y, Tsukuda M, Sakai N, Baba M, et al. Induction of SPARC by VEGF in human vascular endothelial cells. Biochem Biophys Res Commun 2001;287:422-6.
71. Chantrain CF, Shimada H, Jodele S, Groshen S, Ye W, Shalinsky DR, et al. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res 2004;64:1675-86.
72. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002;109:625-37.
73. Busch E, Hohenester E, Timpl R, Paulsson M, Maurer P. Calcium affinity, cooperativity, and domain interactions of extracellular EF-hands present in BM-40. J Biol Chem 2000;275:25508-15.
74. Ikebe T, Shinohara M, Takeuchi H, Beppu M, Kurahara S, Nakamura S, et al. Gelatinolytic activity of matrix metalloproteinase in tumor tissues correlates with the invasiveness of oral cancer. Clin Exp Metastasis 1999;17:315-23.
75. Zhang X, Liu Y, Gilcrease MZ, Yuan XH, Clayman GL, Adler-Storthz K, et al. A lymph node metastatic mouse model reveals alterations of metastasis-related gene expression in metastatic human oral carcinoma sublines selected from a poorly metastatic parental cell line. Cancer 2002;95:1663-72.
76. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer 1997;80:1529-37.
77. Yoon SO, Park SJ, Yun CH, Chung AS. Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol 2003;36:128-37.
78. Kodate M, Kasai T, Hashimoto H, Yasumoto K, Iwata Y, Manabe H. Expression of matrix metalloproteinase (gelatinase) in T1 adenocarcinoma of the lung. Pathol Int 1997;47:461-9.
79. Schmalfeldt B, Prechtel D, Harting K, Spathe K, Rutke S, Konik E, et al. Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin Cancer Res 2001;7:2396-404.
80. Heikkila P, Suojanen J, Pirila E, Vaananen A, Koivunen E, Sorsa T, et al. Human tongue carcinoma growth is inhibited by selective antigelatinolytic peptides. Int J Cancer 2006;118:2202-9.
81. Rosenthal EL, Matrisian LM. Matrix metalloproteases in head and neck cancer. Head Neck 2006;28:639-48.
82. Tu G, Xu W, Huang H, Li S. Progress in the development of matrix metalloproteinase inhibitors. Curr Med Chem 2008;15:1388-95.
83. Golub LM, McNamara TF, Ryan ME, Kohut B, Blieden T, Payonk G, et al. Adjunctive treatment with subantimicrobial doses of doxycycline: effects on gingival fluid collagenase activity and attachment loss in adult periodontitis. J Clin Periodontol 2001;28:146-56.
84. Saikali Z, Singh G. Doxycycline and other tetracyclines in the treatment of bone metastasis. Anticancer Drugs 2003;14:773-8.
85. Fife RS, Sledge GW, Jr. Effects of doxycycline on in vitro growth, migration, and gelatinase activity of breast carcinoma cells. J Lab Clin Med 1995;125:407-11.
86. Fife RS, Sledge GW, Jr., Roth BJ, Proctor C. Effects of doxycycline on human prostate cancer cells in vitro. Cancer Lett 1998;127:37-41.
87. Onoda T, Ono T, Dhar DK, Yamanoi A, Fujii T, Nagasue N. Doxycycline inhibits cell proliferation and invasive potential: combination therapy with cyclooxygenase-2 inhibitor in human colorectal cancer cells. J Lab Clin Med 2004;143:207-16.
88. Roy R, Yang J, Moses MA. Matrix Metalloproteinases As Novel Biomarkers and Potential Therapeutic Targets in Human Cancer. J Clin Oncol 2009.
89. Chen YJ, Jin YT, Shieh DB, Tsai ST, Wu LW. Molecular characterization of angiogenic properties of human oral squamous cell carcinoma cells. Oral Oncol 2002;38:699-705.
90. Mace AT, Harrow SJ, Ganly I, Brown SM. Cytotoxic effects of the oncolytic herpes simplex virus HSV1716 alone and in combination with cisplatin in head and neck squamous cell carcinoma. Acta Otolaryngol 2007;127:880-7.
91. Lokeshwar BL, Selzer MG, Block NL, Gunja-Smith Z. Secretion of matrix metalloproteinases and their inhibitors (tissue inhibitor of metalloproteinases) by human prostate in explant cultures: reduced tissue inhibitor of metalloproteinase secretion by malignant tissues. Cancer Res 1993;53:4493-8.
92. Yang SF, Yang WE, Chang HR, Chu SC, Hsieh YS. Luteolin induces apoptosis in oral squamous cancer cells. J Dent Res 2008;87:401-6.
93. Sigounas G, Sallah S, Sigounas VY. Erythropoietin modulates the anticancer activity of chemotherapeutic drugs in a murine lung cancer model. Cancer Lett 2004;214:171-9.
94. Mignatti P, Rifkin DB. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev 1993;73:161-95.
95. Wakai K, Ohmura E, Satoh T, Murakami H, Isozaki O, Emoto N, et al. Mechanism of inhibitory actions of minocycline and doxycycline on ascitic fluid production induced by mouse fibrosarcoma cells. Life Sci 1994;54:703-9.
96. Bjornland K, Flatmark K, Pettersen S, Aaasen AO, Fodstad O, Maelandsmo GM. Matrix metalloproteinases participate in osteosarcoma invasion. J Surg Res 2005;127:151-6.
97. Seftor RE, Seftor EA, De Larco JE, Kleiner DE, Leferson J, Stetler-Stevenson WG, et al. Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin Exp Metastasis 1998;16:217-25.
98. Li R, Luo X, Archer DF, Chegini N. Doxycycline alters the expression of matrix metalloproteases in the endometrial cells exposed to ovarian steroids and pro-inflammatory cytokine. J Reprod Immunol 2007;73:118-29.
99. Liu J, Xiong W, Baca-Regen L, Nagase H, Baxter BT. Mechanism of inhibition of matrix metalloproteinase-2 expression by doxycycline in human aortic smooth muscle cells. J Vasc Surg 2003;38:1376-83.
100. Hoyt JC, Ballering J, Numanami H, Hayden JM, Robbins RA. Doxycycline modulates nitric oxide production in murine lung epithelial cells. J Immunol 2006;176:567-72.
101. Goscinski MA, Suo ZH, Nesland JM, Chen WT, Zakrzewska M, Wang J, et al. Seprase, dipeptidyl peptidase IV and urokinase-type plasminogen activator expression in dysplasia and invasive squamous cell carcinoma of the esophagus. A study of 229 cases from Anyang Tumor Hospital, Henan Province, China. Oncology 2008;75:49-59.
102. Chang K, Rani AS, Kumar S. Plasminogen activator activity is decreased in rat gingiva during diabetes. J Periodontol 1996;67:743-47.
103. Sun BC, Zhang SW, Qi LS, Zhang DF, Guo H, Zhao XL. [Study on the molecular mechanism of endostatin and doxycycline in suppressing melanoma growth]. Zhonghua Bing Li Xue Za Zhi 2006;35:677-80.
104. Sun B, Zhang S, Zhang D, Yin X, Wang S, Gu Y, et al. Doxycycline influences microcirculation patterns in B16 melanoma. Exp Biol Med (Maywood) 2007;232:1300-7.