簡易檢索 / 詳目顯示

研究生: 鄒仁蕙
Tsou, Jen-Hui
論文名稱: 探討Aurora-C (AURKC)基因在腫瘤形成過程中之角色與轉錄調控機制
The role and transcriptional regulation of Aurora-C (AURKC) in tumorigenesis
指導教授: 洪良宜
Hung, Liang-Yi
學位類別: 博士
Doctor
系所名稱: 生物科學與科技學院 - 生物資訊與訊息傳遞研究所
Insitute of Bioinformatics and Biosignal Transduction
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 105
中文關鍵詞: AURKCPLZF子宮頸癌大腸直腸癌轉型
外文關鍵詞: AURKC, PLZF, cervical cancer, colorectal cancer, transformation
相關次數: 點閱:120下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Aurora 激酶家族屬於serine/threonine 蛋白激酶,在哺乳動物中存在有AURKA, -B 及 -C 三個成員。AURKA 和-B 在許多組織中均有表現,對於調控細胞週期扮演不可或缺的角色。先前研究指出過量表現的AURKA 和-B 會誘導centrosomes amplification、chromosom instability 及不正常的cytokinesis,最終可能導致腫瘤的形成。AURKC 主要侷限於睪丸組織中表現,目前對於其功能了解很少。近來有許多報告指出,AURKC在人類大腸直腸癌,甲狀腺癌和數種癌細胞株中被偵測到有表現的情形。然而,對於為何在癌細胞中AURKC 會表現,以及AURKC 在癌細胞中的作用,目前仍不清楚。在本論文,我們發現AURKC 的確會表現於許多癌細胞株。將AURKC 過量表現於HeLa 及A549 細胞,會增強癌細胞proliferation,transformation 及migration 的能力。於xenograft 動物模式中也發現,大量表現的AURKC會增加腫瘤的大小及重量。更重要的,AURKC 的激酶活性對於這些癌化的特質是必須的。分析人類癌組織檢體,也可發現AURKC 的表現,且其表現與子宮頸癌癌症形成的進程有關,與大腸直腸癌的N status 和MAC stage 亦有高度相關。此外,我們發現,在精子生合成過程中扮演重要角色的PLZF 與Aurkc 的表現呈現相反的情形。進一步分析人類子宮頸癌及大腸直腸癌組織,也證實PLZF 與AURKC mRNA 的表現呈現相反的趨勢。利用報導基因實驗分析,HA-PLZF 確實可專一性地抑制AURKC 基因的表現。染色質免疫沉澱分析進一步證實HA-PLZF 的確會結合在AURKC 啟動子區域。免疫螢光染色的結果顯示,過量表現的AURKC-GFP 會位於有絲分裂染色體的中心體區域,且導致細胞內原本AURKB 蛋白的表現量和激酶活性減少。有趣的是,在轉移性較強的SW620 細胞中,內生性的AURKC 表現量相較於SW480 細胞比較高的。臨床檢體的分析也顯示,AURKB 和AURKC 在大腸直腸癌中的表現是呈現相反的模式。這些結果顯示,AURKC 的確在人類癌細胞中會有過量表現,而PLZF 可能是調控其表現的轉錄因子。

    Aurora is a family of serine/threonine protein kinases. There are three members in mammals: AURKA, -B, and -C. AURKA and -B are expressed in many tissues, and play essential roles in regulating many important events during cell-cycle progression. Previous studies indicated that the overexpression of AURKA and -B can induce centrosome amplification, chromosome instability, and abnormal cytokinesis, and ultimately lead to tumor formation. AURKC has restricted expression in the testes, and less is known about its function. Recently, many reports indicated that AURKC overexpression was detected in human colorectal cancers, thyroid carcinoma, and several cancer cell lines. However, the reason for and the effect of AURKC being overexpressed in cancer cells are unclear. In this study, we found that AURKC is actually expressed in numerous cancer cell lines. Elevated expression of AURKC in HeLa and A549 cells increased the proliferation, transformation, and migratory abilities of cancer cells. In an animal xenograft model, AURKC overexpression enhanced the tumor size and weight. Interestingly, kinase activity is required for these tumorigenic properties of AURKC. Analysis of human cancer specimens showed that the increased expression of AURKC accompanied the progression of human cervical cancer, and was highly correlated with the N status and MAC stage of human colorectal cancer. In mouse testes, PLZF, which plays a crucial role in spermatogenesis, showed a reciprocal expression pattern with Aurkc. In an analysis of human cervical and colorectal cancer tissues, data indicated that expression levels of PLZF and AURKC mRNA displayed opposite patterns. Results of a reporter assay indicated that HA-PLZF specifically inhibited the expression of AURKC, but not AURKA or AURKB. A chromatin immunoprecipitation assay further showed that HA-PLZF can be recruited to the AURKC promoter region. In an immunofluorescence assay, AURKC-GFP overexpression was localized to centromeric regions of mitotic chromosomes and resulted in decreased protein expression levels and kinase activity of endogenous AURKB in HeLa cells. Interestingly, the endogenous protein level of AURKC was higher in more-metastatic SW620 cells than in SW480 cells. Analysis of clinical cancer specimens also showed that expression levels of AURKB and AURKC were in an inverse pattern in colon carcinoma. Taken together, our results indicate that AURKC is indeed overexpressed in human cancer cells, and AURKC expression may be due to loss of inhibitory regulation by PLZF.

    Abstract in Chinese I Abstract II Acknowledgment III Table of Contents IV List of Figures VIII List of Tables IX List of Appendices X Abbreviations XII Chapter 1: Introduction 1 1. The cell cycle 1 2. Introduction of the M phase 1 3. Progression of mitosis is controlled by several protein kinases 2 4. Aurora kinases 2 5. Localization and function of Aurora kinases 3 5.1. AURKA 3 5.2. AURKB 3 5.3. AURKC 3 6. Expression of Aurora kinases 4 6.1. AURKA 4 6.2. AURKB 4 6.3. AURKC 5 7. Aurora kinases and cancer 5 7.1. AURKA 5 7.2. AURKB 6 7.3. AURKC 6 8. Promyelocytic leukemia zinc-finger (PLZF) 6 9. PLZF represses target gene expression 7 10. Physiological role of the PLZF 8 11. Research aims 9 Chapter 2 : Materials and Methods 10 I. Materials 10 1.Chemical compounds 10 2. Primers used in this study 14 3. Antibodies used in this study 15 Ⅱ. Methods 16 1. Complementary (c)DNA expression array 16 2. Preparation of cell lysates and Western blot analysis 16 3. Sample of clinical specimens 17 4. Immunohistochemical staining 17 5. Statistical analysis 18 6. Cell counting assay 18 7. Colony formation assay 18 8. Anchorage-independent growth assay 19 9. Migration assay 19 10. Xenograft analysis 19 11. In situ cell death assay 20 12. Flow cytometry analysis 20 13. Fractionation of mouse testis 21 14. Cell culture and transfection 21 15. Promoter construct and reporter assay 21 16. Chromatin immunoprecipitation (ChIP) and sequential ChIP assay 22 17. Quantitative polymerase chain reaction (Q-PCR) and reverse-transcription (RT)-PCR 23 18. Sodium bisulfite modification of genomic DNA and methylation-specific PCR 23 19. Immunofluorescence assay 23 Chapter 3: Results 25 A. AURKC is expressed in many cancer cell lines and cancer tissues 25 1. Overexpression of AURKC mRNA is observed in many cancer cell lines and human cancer tissues 25 2. The AURKC protein is overexpressed in human cervical and colorectal cancer tissues 25 3. Concomitant AURKC and normal-dysplasia/carcinoma in situ (CIS)-squamous cell carcinoma (SCC) sequence expressions in primary cervical tissues 26 4. Expression of AURKC is positively correlated with lymph node metastasis (N status) and modified Astler-Coller (MAC) staging in human colorectal cancer 27 B. AURKC overexpression enhances the transformation and tumorigenic activities of cancer cells 27 1. Augmented expression and increased kinase activity of AURKC enhance proliferative and transformation activities and migratory ability of cancer cells 27 2. AURKC enhances tumor growth in an animal xenograft model 28 3. AURKC kinase activity enhances phosphorylation levels of AKT/Ser-473 and improves the cell survival ability 29 C. AURKC expression is repressed by the tumor suppressor, PLZF 29 1. Plzf has an opposite expression pattern to Aurkc in spermatogenesis 29 2. PLZF negatively regulates Aurkc gene expression 30 3. PLZF is recruited to the AURKC promoter and represses its gene expression 31 4. Opposite expression patterns of PLZF and AURKC in cancer tissues paired with normal tissues 31 5. PLZF specifically represses AURKC expression 32 6. The repressive effect of PLZF on AURKC expression is not through an interaction with nuclear co-repressor factors 33 7. AURKC expression is not regulated by an epigenetic effect 33 D. AURKC overexpression decreases the expression of AURKB in cancer cells 34 1. AURKC overexpression displaces the centromeric localization of AURKB and decreases the AURKB expression level in cancer cells 34 2. The correlation between AURKB and AURKC does not differ in the CIS-SCC sequence in primary cervical tissues, but shows an inverse pattern in colon carcinoma 35 Chapter 4: Discussion 37 A. AURKC has oncogenic activity and may be able to serve as a potential target for cancer therapy 37 B. AURKC kinase activity is important for the survival and tumorigenecity of cancer cells 38 C. The possible mechanism of PLZF in repressing AURKC expression 40 D. The presumable factors in activating AURKC expression 42 E. The effect of AURKC overexpression on the expression of AURKB and activation of the SAC 43 Chapter 5: Conclusions 45 References 46 Figures 52 Tables 80 Appendices 87 Publications 103 Curriculum vitae 104

    1. Mani S, Wang C, Wu K, Francis R, Pestell R: Cyclin-dependent kinase inhibitors: novel anticancer agents. Expert Opin Investig Drugs 2000, 9:1849-1870.
    2. Pines J, Rieder CL: Re-staging mitosis: a contemporary view of mitotic progression. Nat Cell Biol 2001, 3:E3-6.
    3. Vader G, Lens SM: The Aurora kinase family in cell division and cancer. Biochim Biophys Acta 2008, 1786:60-72.
    4. van de Weerdt BC, Medema RH: Polo-like kinases: a team in control of the division. Cell Cycle 2006, 5:853-864.
    5. O'Connell MJ, Krien MJ, Hunter T: Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol 2003, 13:221-228.
    6. Francisco L, Wang W, Chan CS: Type 1 protein phosphatase acts in opposition to IpL1 protein kinase in regulating yeast chromosome segregation. Mol Cell Biol 1994, 14:4731-4740.
    7. Glover DM, Leibowitz MH, McLean DA, Parry H: Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 1995, 81:95-105.
    8. Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B, Schryver B, Flanagan P, Clairvoyant F, Ginther C, Chan CS, Novotny M, Slamon DJ, Plowman GD: A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 1998, 17:3052-3065.
    9. Bischoff JR, Plowman GD: The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 1999, 9:454-459.
    10. Giet R, Prigent C: Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J Cell Sci 1999, 112 ( Pt 21):3591-3601.
    11. Carmena M, Earnshaw WC: The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 2003, 4:842-854.
    12. Honda K, Mihara H, Kato Y, Yamaguchi A, Tanaka H, Yasuda H, Furukawa K, Urano T: Degradation of human Aurora2 protein kinase by the anaphase-promoting complex-ubiquitin-proteasome pathway. Oncogene 2000, 19:2812-2819.
    13. Bolanos-Garcia VM: Aurora kinases. Int J Biochem Cell Biol 2005, 37:1572-1577.
    14. Adams RR, Carmena M, Earnshaw WC: Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 2001, 11:49-54.
    15. Earnshaw WC, Bernat RL: Chromosomal passengers: toward an integrated view of mitosis. Chromosoma 1991, 100:139-146.
    16. Carmena M: Cytokinesis: the final stop for the chromosomal passengers. Biochem Soc Trans 2008, 36:367-370.
    17. Kimmins S, Crosio C, Kotaja N, Hirayama J, Monaco L, Hoog C, van Duin M, Gossen JA, Sassone-Corsi P: Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Mol Endocrinol 2007, 21:726-739.
    18. Tang CJ, Lin CY, Tang TK: Dynamic localization and functional implications of Aurora-C kinase during male mouse meiosis. Dev Biol 2006, 290:398-410.
    19. Tseng TC, Chen SH, Hsu YP, Tang TK: Protein kinase profile of sperm and eggs: cloning and characterization of two novel testis-specific protein kinases (AIE1, AIE2)related to yeast and fly chromosome segregation regulators. DNA Cell Biol 1998, 17:823-833.
    20. Sasai K, Katayama H, Stenoien DL, Fujii S, Honda R, Kimura M, Okano Y, Tatsuka M, Suzuki F, Nigg EA, Earnshaw WC, Brinkley WR, Sen S: Aurora-C kinase is a novel chromosomal passenger protein that can complement Aurora-B kinase function in mitotic cells. Cell Motil Cytoskeleton 2004, 59:249-263.
    21. Slattery SD, Mancini MA, Brinkley BR, Hall RM: Aurora-C kinase supports mitotic progression in the absence of Aurora-B. Cell Cycle 2009, 8:2984-2994.
    22. Carvajal RD, Tse A, Schwartz GK: Aurora kinases: new targets for cancer therapy. Clin Cancer Res 2006, 12:6869-6875.
    23. Tanaka M, Ueda A, Kanamori H, Ideguchi H, Yang J, Kitajima S, Ishigatsubo Y: Cell-cycle-dependent regulation of human aurora A transcription is mediated by periodic repression of E4TF1. J Biol Chem 2002, 277:10719-10726.
    24. Kimura M, Uchida C, Takano Y, Kitagawa M, Okano Y: Cell cycle-dependent regulation of the human aurora B promoter. Biochem Biophys Res Commun 2004, 316:930-936.
    25. Tang CJ, Chuang CK, Hu HM, Tang TK: The zinc finger domain of Tzfp binds to the tbs motif located at the upstream flanking region of the Aie1 (aurora-C) kinase gene. J Biol Chem 2001, 276:19631-19639.
    26. Bernard M, Sanseau P, Henry C, Couturier A, Prigent C: Cloning of STK13, a third human protein kinase related to Drosophila aurora and budding yeast Ipl1 that maps on chromosome 19q13.3-ter. Genomics 1998, 53:406-409.
    27. Kimura M, Matsuda Y, Yoshioka T, Okano Y: Cell cycle-dependent expression and centrosome localization of a third human aurora/Ipl1-related protein kinase, AIK3. J Biol Chem 1999, 274:7334-7340.
    28. Brown JR, Koretke KK, Birkeland ML, Sanseau P, Patrick DR: Evolutionary relationships of Aurora kinases: implications for model organism studies and the development of anti-cancer drugs. BMC Evol Biol 2004, 4:39.
    29. Lens SM, Voest EE, Medema RH: Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 2010, 10:825-841.
    30. Hong SH, David G, Wong CW, Dejean A, Privalsky ML: SMRT corepressor interacts with PLZF and with the PML-retinoic acid receptor alpha (RARalpha) and PLZF-RARalpha oncoproteins associated with acute promyelocytic leukemia. Proc Natl Acad Sci U S A 1997, 94:9028-9033.
    31. Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A, Brinkley BR, Sen S: Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 1998, 20:189-193.
    32. Littlepage LE, Wu H, Andresson T, Deanehan JK, Amundadottir LT, Ruderman JV: Identification of phosphorylated residues that affect the activity of the mitotic kinase Aurora-A. Proc Natl Acad Sci U S A 2002, 99:15440-15445.
    33. Meraldi P, Honda R, Nigg EA: Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J 2002, 21:483-492.
    34. Landen CN, Jr., Lin YG, Immaneni A, Deavers MT, Merritt WM, Spannuth WA, Bodurka DC, Gershenson DM, Brinkley WR, Sood AK: Overexpression of the centrosomal protein Aurora-A kinase is associated with poor prognosis in epithelial ovarian cancer patients. Clin Cancer Res 2007, 13:4098-4104.
    35. Araki K, Nozaki K, Ueba T, Tatsuka M, Hashimoto N: High expression of Aurora-B/Aurora and Ipll-like midbody-associated protein (AIM-1) in astrocytomas. J Neurooncol 2004, 67:53-64.
    36. Nguyen HG, Makitalo M, Yang D, Chinnappan D, St Hilaire C, Ravid K: Deregulated Aurora-B induced tetraploidy promotes tumorigenesis. FASEB J 2009, 23:2741-2748.
    37. Katayama H, Ota T, Morita K, Terada Y, Suzuki F, Katoh O, Tatsuka M: Human AIM-1: cDNA cloning and reduced expression during endomitosis in megakaryocyte-lineage cells. Gene 1998, 224:1-7.
    38. Takahashi T, Futamura M, Yoshimi N, Sano J, Katada M, Takagi Y, Kimura M, Yoshioka T, Okano Y, Saji S: Centrosomal kinases, HsAIRK1 and HsAIRK3, are overexpressed in primary colorectal cancers. Jpn J Cancer Res 2000, 91:1007-1014.
    39. Ulisse S, Delcros JG, Baldini E, Toller M, Curcio F, Giacomelli L, Prigent C, Ambesi-Impiombato FS, D'Armiento M, Arlot-Bonnemains Y: Expression of Aurora kinases in human thyroid carcinoma cell lines and tissues. Int J Cancer
    2006, 119:275-282.
    40. Wiseman SM, Masoudi H, Niblock P, Turbin D, Rajput A, Hay J, Bugis S, Filipenko D, Huntsman D, Gilks B: Anaplastic thyroid carcinoma: expression profile of targets for therapy offers new insights for disease treatment. Ann Surg Oncol 2007, 14:719-729.
    41. Cook M, Gould A, Brand N, Davies J, Strutt P, Shaknovich R, Licht J, Waxman S, Chen Z, Gluecksohn-Waelsch S, Krumlauf R, Zelenti A: Expression of the zinc-finger gene PLZF at rhombomere boundaries in the vertebrate hindbrain. Proc Natl Acad Sci U S A 1995, 92:2249-2253.
    42. Jansen JH, Lowenberg B: Acute promyelocytic leukemia with a PLZF-RARalpha fusion protein. Semin Hematol 2001, 38:37-41.
    43. Muller C, Yang R, Park DJ, Serve H, Berdel WE, Koeffler HP: The aberrant fusion proteins PML-RAR alpha and PLZF-RAR alpha contribute to the overexpression of cyclin A1 in acute promyelocytic leukemia. Blood 2000, 96:3894-3899.
    44. Slack JL: The biology and treatment of acute progranulocytic leukemia. Curr Opin Oncol 1999, 11:9-13.
    45. Kelly KF, Daniel JM: POZ for effect--POZ-ZF transcription factors in cancer and development. Trends Cell Biol 2006, 16:578-587.
    46. Reid A, Gould A, Brand N, Cook M, Strutt P, Li J, Licht J, Waxman S, Krumlauf R, Zelent A: Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood 1995, 86:4544-4552.
    47. Sitterlin D, Tiollais P, Transy C: The RAR alpha-PLZF chimera associated with Acute Promyelocytic Leukemia has retained a sequence-specific DNA-binding domain. Oncogene 1997, 14:1067-1074.
    48. Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S, Nason-Burchenal K, Dmitrovsky E, Zelent A, Licht JD: Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene 1999, 18:925-934.
    49. Costoya JA: Functional analysis of the role of POK transcriptional repressors. Brief Funct Genomic Proteomic 2007, 6:8-18.
    50. David G, Alland L, Hong SH, Wong CW, DePinho RA, Dejean A: Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998, 16:2549-2556.
    51. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG: Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998, 391:815-818.
    52. Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A: Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998, 91:2634-2642.
    53. Yoshida M, Horinouchi S, Beppu T: Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 1995, 17:423-430.
    54. Ivins S, Pemberton K, Guidez F, Howell L, Krumlauf R, Zelent A: Regulation of Hoxb2 by APL-associated PLZF protein. Oncogene 2003, 22:3685-3697.
    55. McConnell MJ, Chevallier N, Berkofsky-Fessler W, Giltnane JM, Malani RB, Staudt LM, Licht JD: Growth suppression by acute promyelocytic leukemia-associated protein PLZF is mediated by repression of c-myc expression. Mol Cell Biol 2003, 23:9375-9388.
    56. Petrie K, Guidez F, Zhu J, Howell L, Owen G, Chew YP, Parks S, Waxman S, Licht J, Mittnacht S, Zelent A: Retinoblastoma protein and the leukemia-associated PLZF transcription factor interact to repress target gene promoters. Oncogene 2008, 27:5260-5266.
    57. Rho SB, Park YG, Park K, Lee SH, Lee JH: A novel cervical cancer suppressor 3 (CCS-3) interacts with the BTB domain of PLZF and inhibits the cell growth by inducing apoptosis. FEBS Lett 2006, 580:4073-4080.
    58. Ball HJ, Melnick A, Shaknovich R, Kohanski RA, Licht JD: The promyelocytic leukemia zinc finger (PLZF) protein binds DNA in a high molecular weight complex associated with cdc2 kinase. Nucleic Acids Res 1999, 27:4106-4113.
    59. Chen SJ, Zelent A, Tong JH, Yu HQ, Wang ZY, Derre J, Berger R, Waxman S, Chen Z: Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest 1993, 91:2260-2267.
    60. Avantaggiato V, Pandolfi PP, Ruthardt M, Hawe N, Acampora D, Pelicci PG, Simeone A: Developmental analysis of murine Promyelocyte Leukemia Zinc Finger (PLZF) gene expression: implications for the neuromeric model of the forebrain organization. J Neurosci 1995, 15:4927-4942.
    61. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE: Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 2004, 36:647-652.
    62. Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP, Dolci S: Repression of kit expression by Plzf in germ cells. Mol Cell Biol 2007, 27:6770-6781.
    63. Oatley JM, Brinster RL: Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 2008, 24:263-286.
    64. Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, Orwig KE, Wolgemuth DJ, Pandolfi PP: Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 2004, 36:653-659.
    65. Kaplan: Nonparanietric estimation from incomplete observations. J. Amer. Statist. Assn. 1958, 53:457-481.
    66. Gehan EA: A generalized two-sample Wilcoxon test for doubly censored data. Biometrika 1965, 52:650-653.
    67. Handel MA, Caldwell KA, Wiltshire T: Culture of pachytene spermatocytes for analysis of meiosis. Dev Genet 1995, 16:128-139.
    68. Hofmann MC, Millan JL: Establishment of mammalian testicular cell lines. Methods Cell Biol 1998, 57:93-110.
    69. Hung LY, Tseng JT, Lee YC, Xia W, Wang YN, Wu ML, Chuang YH, Lai CH, Chang WC: Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucleic Acids Res 2008, 36:4337-4351.
    70. Lopez-Serra L, Ballestar E, Fraga MF, Alaminos M, Setien F, Esteller M: A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer. Cancer Res 2006, 66:8342-8346.
    71. Spengler D: Aurora-C-T191D is a hyperactive Aurora-C mutant. Cell Cycle 2007, 6:1803-1804.
    72. Martin PJ, Delmotte MH, Formstecher P, Lefebvre P: PLZF is a negative regulator of retinoic acid receptor transcriptional activity. Nucl Recept 2003, 1:6.
    73. Muscat GE, Burke LJ, Downes M: The corepressor N-CoR and its variants RIP13a and RIP13Delta1 directly interact with the basal transcription factors TFIIB, TAFII32 and TAFII70. Nucleic Acids Res 1998, 26:2899-2907.
    74. Sugimoto T, Tomita A, Hiraga J, Shimada K, Kiyoi H, Kinoshita T, Naoe T: Escape mechanisms from antibody therapy to lymphoma cells: downregulation of CD20 mRNA by recruitment of the HDAC complex and not by DNA methylation. Biochem Biophys Res Commun 2009, 390:48-53.
    75. Hewitt RE, McMarlin A, Kleiner D, Wersto R, Martin P, Tsokos M, Stamp GW, Stetler-Stevenson WG: Validation of a model of colon cancer progression. J Pathol 2000, 192:446-454.
    76. Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington MK, Beauchamp RD: Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 2005, 115:1765-1776.
    77. Zendman AJ, Ruiter DJ, Van Muijen GN: Cancer/testis-associated genes: identification, expression profile, and putative function. J Cell Physiol 2003, 194:272-288.
    78. Guan Z, Wang XR, Zhu XF, Huang XF, Xu J, Wang LH, Wan XB, Long ZJ, Liu JN, Feng GK, Huang W, Zeng YX, Chen FJ, Liu Q: Aurora-A, a negative prognostic marker, increases migration and decreases radiosensitivity in cancer cells. Cancer Res 2007, 67:10436-10444.
    79. Qi G, Ogawa I, Kudo Y, Miyauchi M, Siriwardena BS, Shimamoto F, Tatsuka M, Takata T: Aurora-B expression and its correlation with cell proliferation and
    metastasis in oral cancer. Virchows Arch 2007, 450:297-302.
    80. Chen HL, Tang CJ, Chen CY, Tang TK: Overexpression of an Aurora-C kinase-deficient mutant disrupts the Aurora-B/INCENP complex and induces polyploidy. J Biomed Sci 2005, 12:297-310.
    81. Taga M, Hirooka E, Ouchi T: Essential roles of mTOR/Akt pathway in Aurora-A cell transformation. Int J Biol Sci 2009, 5:444-450.
    82. Yang H, He L, Kruk P, Nicosia SV, Cheng JQ: Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer 2006, 119:2304-2312.
    83. Long ZJ, Xu J, Yan M, Zhang JG, Guan Z, Xu DZ, Wang XR, Yao J, Zheng FM, Chu GL, Cao JX, Zeng YX, Liu Q: ZM 447439 inhibition of aurora kinase induces Hep2 cancer cell apoptosis in three-dimensional culture. Cell Cycle 2008, 7:1473-1479.
    84. Furukawa T, Kanai N, Shiwaku HO, Soga N, Uehara A, Horii A: AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene 2006, 25:4831-4839.
    85. Eves EM, Shapiro P, Naik K, Klein UR, Trakul N, Rosner MR: Raf kinase inhibitory protein regulates aurora B kinase and the spindle checkpoint. Mol Cell 2006, 23:561-574.
    86. Slattery SD, Moore RV, Brinkley BR, Hall RM: Aurora-C and Aurora-B share phosphorylation and regulation of CENP-A and Borealin during mitosis. Cell Cycle 2008, 7:787-795.
    87. Rho SB, Choi K, Park K, Lee JH: Inhibition of angiogenesis by the BTB domain of promyelocytic leukemia zinc finger protein. Cancer Lett 2010, 294:49-56.
    88. Wu SR, Li CF, Hung LY, Huang AM, Tseng JT, Tsou JH, Wang JM: CCAAT/enhancer-binding protein delta mediates tumor necrosis factor alpha-induced Aurora kinase C transcription and promotes genomic instability. J Biol Chem 2011, 286:28662-28670.
    89. Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B: Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun 2009, 383:157-162.
    90. Ko CY, Hsu HC, Shen MR, Chang WC, Wang JM: Epigenetic silencing of CCAAT/enhancer-binding protein delta activity by YY1/polycomb group/DNA methyltransferase complex. J Biol Chem 2008, 283:30919-30932.

    下載圖示 校內:2016-11-07公開
    校外:2016-11-07公開
    QR CODE