| 研究生: |
王銘慶 Wang, Ming-Cing |
|---|---|
| 論文名稱: |
使用頻域光子遷移系統監測組織仿體的葡萄糖濃度變化 Variation of Glucose Concentration in Tissue Phantom Monitored with a Frequency Domain Photon Migration System. |
| 指導教授: |
曾盛豪
Tseng, Sheng-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 吸收係數 、散射係數 、葡萄糖濃度 、1550奈米光學特性 、縮放蒙地卡羅模型 |
| 外文關鍵詞: | Absorption Coefficient, Reduced Scattering Coefficient, Glucose concentration, 1550 nm Optical Properties, Scaling Monte Carlo algorithm |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中我們架構頻域光子遷移系統的光學方法去量測生物組織的生理參數,它是使用波長808奈米的近紅外光並利用光傳播理論模型去精確地得知組織仿體的吸收係數和散射係數。在論文中我們使用頻域光子遷移系統並搭配自製探頭去量化仿體的光學性質,首先我們使用頻域光子遷移系統量測五種不同葡萄糖濃度的液態仿體,並量化液態仿體的吸收係數和散射係數,其次我們使用擴散理論模擬增加調變頻率的頻寬,進而證實增加調變頻率可以增加振幅及相位的解析度,再來我們使用Matlab撰寫新型縮放蒙地卡羅模型,相較於一般的蒙地卡羅演算法,速度快了將近五個數量級,且誤差率小於3%,相較於舊有的快速蒙地卡羅演算法,可以使用於更多光學參數的模擬而不影響模擬速度,最後我們使用新型縮放蒙地卡羅模型模擬波長1550奈米的光學參數,進而驗證我們撰寫的新型縮放蒙地卡羅模型其解析度為100 mg/dl,除此之外我們比較808奈米與1550奈米的模擬結果,提出同時使用808奈米與1550奈米波長光源的優勢,最後我們的研究結果驗證頻域光子遷移系統是一個能用來定量組織組成的快速非侵入式光學方法。
In this thesis, we demonstrate the use of optical method, frequency domain photon migration system (FDPM), to determine physiological parameters of biological tissues. It use a 808 nm laser diode as the light source coupled with mathematical photon transport models to accurately determine optical absorption (µa) and reduced scattering (µs′) properties of phantoms. Here, we employed the fiber probe with the FDPM technique to quantify the optical properties of in-vitro phantom. First, we use FDPM system to measure five glucose concentration liquid phantoms of various absorption and scattering properties. Second, we speculate that resolve the slight variation of optical properties is the advantage of the broad bandwidth FDPM system by using the diffusion model. Third, we implement the scaling Monte Carlo method by using Matlab. The scaling method can reduce computation time by nearly 5 orders of magnitude, and the error is less than 3% which is compared with the original Monte Carlo algorithm. The scaling Monte Carlo algorithm can be used obtain spatially resolved reflectance spectra of tissue with different optical parameters without significantly affecting simulation time. Finally, we speculate that resolve the slight variation of optical properties in scaling Monte Carlo method is 100 mg/dl. In addition, we combine the simulated result at 808 and 1550 nm with the specific advantage. Our study reveals that the FDPM system provides a fast and noninvasive way for tissue composition quantification.
[1] World Health Organization, "Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia," (2006).
[2] 林興中,「糖尿病病因」,財團法人糖尿病關懷基金會 (2006)。
[3] Barry H. Ginsberg, "Factors Affecting Blood Glucose Monitoring: Sources of Errors in Measurement," Journal of Diabetes Science and Technology 3, 903-913, (2009).
[4] Guido Freckmann, Annette Baumstark, Nina Jendrike, Eva Zschornack, Serge Kocher, Jacques Tshiananga, Frank Heister, and Cornelia Haug, "System Accuracy Evaluation of 27 Blood Glucose Monitoring Systems According to DIN EN ISO 15197," DIABETES TECHNOLOGY & THERAPEUTICS 12, 221-231, (2010).
[5] C.-H. Chung, "Analysis of breast cancer detection using near-infrared," Department of Electrical Engineering, Nation Cheng Kung University (2011).
[6] A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Applied Optics 35, 2304-2314 (1996).
[7] F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Applied Optics 38, 4939-4950 (1999).
[8] E. L. Hull, M. G. Nichols, and T. H. Foster, "Quantitative broadband near-infrared spectroscopy of tissue-simulating phantoms containing erythrocytes," Physics in Medicine and Biology 43, 3381-3404 (1998).
[9] M. Tarumi, M. Shimada, T. Murakami, M. Tamura, M. Shimada, H. Arimoto and Y. Yamada, "Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction," Physics in Medicine and Biology 48, 2373-2390 (2003).
[10] K. Maruo, M. Tsurugi, J. Chin, T. Ota, H. Arimoto, Y. Yamada, M. Tamura, M. Ishii, and Y. Ozaki, "Noninvasive Blood Glucose Assay Using a Newly Developed Near-Infrared System," IEEE Journal of Selected Topics in Quantum Electronics 9, 322-330 (2003).
[11] K. Maruo, T. Ota, M. Tsurugi, T. Nakagawa, H. Arimoto, M. Tamura, Y. Ozaki, and Y. Yamada, "New Methodology to Obtain a Calibration Model for Noninvasive Near-Infrared Blood Glucose Monitoring," Society for Applied Spectroscopy 60, 441-449 (2006).
[12] S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Applied Optics 36, 386-396 (1997).
[13] T. J. Farrell, M. S. Patterson, and B. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo," Medical Physics 19, 879-888 (1992).
[14] B. White, P. Sheng, M. Postel, and G. Papanicolaou, "Probing through loudness: theory of statistical inversion for multiply scattered data," Phys. Rev. Lett. 63, 2228-2231 (1989).
[15] M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Applied Optics 28, 2331-2336 (1989).
[16] B. White, P. Sheng, Z. Q. Zhang, and G. Papanicolaou, "Wave localization characteristics in the time domain," Phys. Rev. Lett. 59, 1918-1921 (1987).
[17] R. C. Haskell, L. O. Svaasand, T.T. Tsay, T.C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative ransfer," Journal of the Optical Society of America 11, 2727–2741 (1994).
[18] Fishkin, J. B., Coquoz, O., Anderson, E. R., Brenner, M., and B. J. Tromberg, "Frequency Domain Photon Migration Measurements of Normal and Malignant Tissue Optical Properties in a Human Subject," Applied Optics 36, 10-20 (1997).
[19] B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, "Phase measurement of light absorption and scatter in human tissue," Review of Scientific Instruments 69, 3457-3481 (1998).
[20] T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, "Broad Bandwidth Frequency Domain Instrument for Quantitative Tissue Optical Spectroscopy," Rev. Sci. Instrum. 71, 2500-2513 (2000).
[21] John S. Maier, Scott A. Walker, Sergio Fantini, Maria Angela Franceschini, and Enrico Gratton, "Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared," OPTICS LETTERS 19, 0146-9592 (1994).
[22] J. B. Fishkin and E. Gratton, "Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge," Journal of the Optical Society of America 10, 127-140 (1993).
[23] S. Fantini, M. A. Franceschini, J. B. Fishkin, B. Barbieri, and E. Gratton, "Quantitative determination of the absorption spectra of chromophores in strongly scattering media: a light-emitting-diode based technique," Applied Optics 33, 5204 (1994).
[24] CRC Handbook of Chemistry and Physics, 91th ed. R. C. Weast, ed. (CRC, Cleveland, Ohio, 2011).
[25] N. M. and S. Ulam, "The Monte Carlo Method," Journal of the American Statistical Association 44, 335-341 (1949)
[26] S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, "A Monte Carlo Model of Light Propagation in Tissue," Dosimetry of Laser Radiation in Medicine and Biology 5, 102-111 (1989).
[27] L. V. Wang and Hsin-I Wu, "Biomedical Optics: Principles and Imaging," New Jersey Wiley (2007).
[28] R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijistra, A. C. M. Dassel and J. G. Aarnoudse, "Condensed Monte Carlo simulations for the escription of light transport," Applied Optics 32, 426-434 (1993).
[29] Q. Liu and N. Ramanujam, "Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media," Journal of the Optical Society of America 24, 1011-1025 (2007).
[30] L. Kou, D. Labrie, and P. Chylek, "Refractive indices of water and ice in the 0.65 to 2.5 µm spectral range," Applied Optics 32, 3531-3540 (1993).
[31] Robert L.P. van Veen, H.j.c.m. Sterenborg, A Pifferi, A. Torricelli, and R. Cubeddu, "Determination of VIS- NIR absorption coefficients of mammalian fat, with time and spatially resolved diffuse reflectance and transmission spectroscopy," OSA Annual BIOMED Topical Meeting (2004).
[32] Chang-Bong Kim and Chin B Su, "Measurement of refractive index of liquids at 1.3 and 1.5 micron using a fiber optic Fresnel ratio meter," Meas. Sci. Technol. 32, 1683-1686 (2004).
[33] Hui Su, Xu Guang Huang, "Fresnel-reflection-based fiber sensor for on-line measurement of solute concentration in solutions," Sensors and Actuators B 126, 579-582 (2007).
[34] Hugo J. van Staveren, Christian J. M. Moes, Jan van Marie, Scott A. Prahl, and Martin J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm," Applied Optics 30, 4507-4514 (1991).
[35] Tamara L. Troy and Suresh N. Thennadil, "Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm," Journal of Biomedical Optics 6, 167-176 (2001).
校內:2018-02-06公開