| 研究生: |
黃有晟 Huang, You-Cheng |
|---|---|
| 論文名稱: |
鰭片嵌入式熱電模組之性能測試與分析 Experimental and Numerical Thermal-Electrical Analysis of Thermoelectric Module with Built-in Fin |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 廢熱回收 、熱電發電 、計算流體力學 |
| 外文關鍵詞: | waste heat recovery, thermoelectric generator, CFD |
| 相關次數: | 點閱:90 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前一般工廠既有之廢熱回收技術包含:(1)汽電共生技術(2)蒸氣製造回收技術(3)預熱回收技術,其中未回收之廢熱,大多屬於受限於空間之500℃以下之中低溫廢熱。而熱電晶片(thermoelectric generator, TEG)發電純粹依靠材料本身之材料性質,因此具有無傳動部件、無噪音、無污染、維護成本低廉、可24小時全天候操作等優點,故將其應用於工廠之中低溫廢熱回收,冀以提升整體回收之比例。另外由於煙道內壁為平整之裸管,對流效應不佳,為有效提升熱電晶片之發電功率,故以鰭片作為熱傳增強裝置。本文之主要目的即針對鰭片嵌入式熱電模組進行性能測試與鰭片幾何尺寸之參數分析。
本研究首先建立熱電模組與煙道之三維數值模型,分別計算模組發電功率與煙道內之壓降,探討鰭片幾何尺寸(鰭片高度、基座寬度與基座厚度)在不同熱側操作條件下對熱電模組熱傳與發電之關係,以及在煙道內不同流速條件下對壓降與實際輸出功率(發電功率-泵功)之關係。而為驗證數值模擬之準確性,亦架設煙道系統對熱電模組進行實驗,量測在不同熱側工作流體溫度與流速下熱電模組之性能曲線,藉以比對模擬結果,其最大誤差約15%。
Thermoelectric generators present potential applications in the conversion of low level thermal energy into electrical power. As miniature generating devices, the TEG has the advantages of compact structure, high reliability, no vibration and direct electric energy conversion.
When the thermoelectric generators are used to recover waste heat from a larger chimney plate, the TEG hot side temperature and thus the electric power output can be increased through built-in fin heat sink into the chimney tunnel to increase the convective heat transfer area. On a whole, the main purpose of this article is to analyze the effects of the geometrical parameters on both the electric power output and the chimney pressure drop characteristics. The geometrical parameters include the fin height (Lf), the fin base width (W) and the fin base thickness (H), respectively. In addition, the effects of different operating conditions include waste gas effective heat transfer coefficients ( heff = 5–40 W/m2-K ), temperature differences between the waste gas and the cooling water for TEG modules ( DT = 200–400 K ) and inlet velocities for the chimney waste gas are also discussed in detail.
1. Seebeck, T.J.,“Magnetische polarisation der metalle und erzedurch temperatur-differenz. abhand deut”, Akad. Wiss. Berlin, pp. 265-373, 1822.
2. Peltier, J.C., “Nouvelles experiences sur la caloriecete des courans electriques”, Ann. Chem., LVI, pp. 371-387, 1834.
3. Thomson, W., “On a mechanical theory of thermoelectric currents”, Proc. Roy. Soc. Edinburgh, pp. 91-98, 1851.
4. Altenkirch, E., “ber Den Nutzeffekt Der Thermosäule”, Physikalische Zeitschrift, Vol. 10, pp. 560-580, 1909.
5. Altenkirch, E., “Elektrothermische Kälteerzeugung Und Reversible Elektrische Heizung”, Physikalische Zeitschrift, Vol. 12, pp. 920-924, 1911.
6. Ioffe, A.F., “Semiconductor thermoelements and thermoelectric cooling”, Infosearch Limited, London, 1957.
7. Riffat, S.B. and Ma, X., “Thermoelectrics: A Review of Present and Potential Applications”, Applied thermal engineering, Vol. 23, pp. 913-935, 2003.
8. Suzuki, R.O. and Tanaka, D., “Mathematical Simulation of Thermoelectric Power Generation with the Multi-Panels”, Journal of Power Sources, Vol. 122, pp. 201-209, 2003.
9. Crane, D.T. and Jackson, G.S., “Optimization of Cross Flow Heat Exchangers for Thermoelectric Waste Heat Recovery”, Energy conversion and management, Vol. 45, pp. 1565-1582, 2004.
10. Yu, J. and Zhao, H., “A Numerical Model for Thermoelectric Generator with the Parallel-Plate Heat Exchanger”, Journal of Power Sources, Vol. 172, pp. 428-434, 2007.
11. Qiu, K. and Hayden, A.C.S., “Development of a Thermoelectric Self-Powered Residential Heating System”, Journal of Power Sources, Vol. 180, pp. 884-889, 2008.
12. Niu, X., Yu, J. and Wang, S., “Experimental Study on Low-Temperature Waste Heat Thermoelectric Generator”, Journal of Power Sources, Vol. 188, pp. 621-626, 2009.
13. Martínez, A., Vián, J.G., Astrain, D., Rodríguez, A. and Berrio, I., “Optimization of the Heat Exchangers of a Thermoelectric Generation System”, Journal of electronic materials, Vol. 39, pp. 1463-1468, 2010.
14. Astrain, D., Vian, JG, Martínez, A. and Rodríguez, A., “Study of the Influence of Heat Exchangers' Thermal Resistances on a Thermoelectric Generation System”, Energy, Vol. 35, pp. 602-610, 2010.
15. Hsiao, Y.Y., Chang, W.C. and Chen, S.L., “A Mathematic Model of Thermoelectric Module with Applications on Waste Heat Recovery from Automobile Engine”, Energy, Vol. 35, pp. 1447-1454, 2010.
16. Kim, K.J., “Thermal and Power Generating Performances of Thermoelectric Energy Recovery Modules”, Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on, pp. 1-7, 2010.
17. Gou, X., Xiao, H. and Yang, S., “Modeling, Experimental Study and Optimization on Low-Temperature Waste Heat Thermoelectric Generator System”, Applied Energy, Vol. 87, pp. 3131-3136, 2010.
18. Hsu, C.T., Huang, G.Y., Chu, H.S., Yu, B. and Yao, D.J., “Experiments and Simulations on Low-Temperature Waste Heat Harvesting System by Thermoelectric Power Generators”, Applied Energy, Vol. 88, pp. 1291-1297, 2011.
19. Dai, D., Zhou, Y. and Liu, J., “Liquid Metal Based Thermoelectric Generation System for Waste Heat Recovery”, Renewable Energy, Vol. 36, pp. 3530-3536, 2011.
20. Lee, S., “Optimum Design and Selection of Heat Sinks”, Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, Vol. 18, pp. 812-817, 1995.
21. Wirtz, R.A., Chen, W. and Zhou, R., “Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks”, Journal of Electronic Packaging, Vol. 116, pp. 206, 1994.
22. Jousson, H. and Palm, B., “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks under Varying Bypass Conditions”, Components and Packaging Technologies, IEEE Transactions on, Vol. 23, pp. 47-54, 2000.
23. Jonsson, H. and Moshfegh, B., “Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks-Influence of Flow Bypass”, Components and Packaging Technologies, IEEE Transactions on, Vol. 24, pp. 142-149, 2001.
24. Hossain, R., Culham, J.R. and Yovanovich, M.M., “Influence of Bypass on Flow through Plate Fin Heat Sinks”, Semiconductor Thermal Measurement and Management Symposium, 2007. SEMI-THERM 2007. Twenty Third Annual IEEE, pp. 220-227, 2007.
25. Prstic, S., Iyengar, M. and Bar-Cohen, A., “Bypass Effect in High Performance Heat Sinks”, Strojniski Vestnik, Vol. 47, pp. 441-448, 2001.
26. Barrett, A.V. and Obinelo, I.F., “Characterization of Longitudinal Fin Heat Sink Thermal Performance and Flow Bypass Effects through CFD Methods”, Semiconductor Thermal Measurement and Management Symposium, 1997. SEMI-THERM XIII., Thirteenth Annual IEEE, pp. 158-164, 1997.
27. Launder, B.E. and Spalding, D.B. “The Numerical Computation of Turbulent Flows”, Computer methods in applied mechanics and engineering, Vol. 3, pp. 269-289, 1974.
28. Gnielinski, V., “New Equation for Heat and Mass Transfer in Turbulent Pipe and Channel Flow”, International Journal of Chemical Engineering, Vol. 16, pp. 359-367, 1976.
29. CFD-ACE(U), CFD Research Corporation, Albama, USA, 2004.
30. STAR-CD, Methodology, Version 3.15, Japan, 2001
31. Van Doormaal, J.P. and Raithby, F.D., “Enhancements of the SIMPLE Method predicting Incompressible fluid flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163, 1984.
32. Patankar, S.V., “Numerical Heat Transfer and Fluid Flow”, Hemisphere Publishing Corporation, 1984.