簡易檢索 / 詳目顯示

研究生: 蔡仁瑋
Tsai, Ren-Wei
論文名稱: 在離子液體中電沉積銅鋅合金及碲化鉛
Electrodeposition of Copper-Zinc Alloy and Lead Telluride in Ionic Liquids
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 112
中文關鍵詞: 離子液體電沉積銅鋅合金碲化鉛
外文關鍵詞: Ionic liquid, Electrodeposition, Copper-zinc alloy, Lead telluride
相關次數: 點閱:49下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩部份,第一部份為利用一個簡便且有效率的電化學沉積方式在無模板下製備銅鋅奈米線。以電沉積方式於玻璃碳電極及鎢電極上探討氯化亞銅於40-60mol%ZnCl2-EMIC離子液體中的電化學行為。定電位電鍍所得的銅鋅合金鍍層根據沉積電位及氯化亞銅濃度的不同而產生各種不同的形貌,如中空的六角錐、奈米線、多孔的奈米線及網狀結構。電沉積的銅鋅合金樣品分別以掃描式電子顯微鏡(SEM)、能量分散光譜儀(EDS)、X射線繞射儀(XRD)、穿透式電子顯微鏡(TEM)進行結構特徵分析。利用所得的銅鋅合金奈米線與網狀結構在弱鹼性溶液中進行硝酸根離子的電催化實驗,發現有良好的效果。
    第二部份以電化學及電沉積的方式於白金電極、鎳電極及玻璃碳電極上探討鉛、碲及碲化鉛在EMI-BF4室溫離子液體中的電化學行為。藉由鉛在碲上產生低電位沉積(underpotential deposition,UPD)現象電沉積碲化鉛薄膜,此UPD現象的電荷轉移速率較緩慢。將沉積於鎳基材上的碲化鉛薄膜藉由能量分散光譜儀(EDS)、掃描式電子顯微鏡(SEM)、X射線繞射儀(XRD)分析結構的特徵。PbTe的能隙經由計算的結果約0.25eV。

    In this study, we used a facile and efficient synthesis route for prepartation of Cu-Zn nanowires via electrochemical deposition without any templates. The electrodeposition of Cu-Zn alloys was investigated on glassy carbon and tungsten electrodes in 40-60mol% ZnCl2-EMIC ionic liquid containing copper(I). Depending on the deposition potential and Cu(I) concentration, potentiostatic electrolysis produced Cu-Zn alloy deposits with various unusual morphologies such as hollow hexagonal pyramids, nanowires, nanoporous wires, and network structures. The electrodeposited Cu-Zn alloys were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), and scanning electron microscope (TEM). The morphologies of Cu-Zn alloy deposits with porous nanowires and network structures exhibited the highest electrocatalytic activity of NO3- reduction in a weakly alkaline solution.
    The electrochemical behaviors of Pb, Te, and PbTe were studied in the room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate on platinum, nickel, and glassy carbon electrodes. PbTe flims could be obtained by the underpotential deposition (UPD) of Pb on the deposited Te. The UPD of Pb on Te was, however, limited by a slow charge transfer rate. Samples of PbTe flims were prepared on nickel substrate and characterized by energy-dispersive spectroscope (EDS), scanning electron microscope (SEM), and X-ray diffraction (XRD). The band gap energy of the PbTe deposit was calculated about 0.25 eV.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XIX 符號說明 XX 第一章 緒論 1 1-1 離子液體(Ionic liquild) 1 1-2 銅鋅合金(Copper-zinc alloy) 4 1-2-1 銅鋅合金的特性與發展 4 1-2-2 電沉積法製備銅鋅合金之文獻回顧 4 1-3 碲化鉛(Lead telluride) 5 1-3-1 碲化鉛的特性與發展 5 1-3-2 電沉積法製備碲化鉛之文獻回顧 5 1-4 研究動機 6 第二章 實驗原理及方法 7 2-1 質傳(Mass Transfer) 7 2-2 循環伏安法(Cyclic Votammetry,CV) 8 2-3 電流時間法(Chronoamperometry) 9 2-4 電化學成核理論 10 2-4-1 成核動力學 11 2-4-2 二維空間的核成長(2D growth) 13 2-4-3 三維空間的核成長(3D growth) 13 第三章 實驗 19 3-1 實驗藥品 19 3-2 電沉積基材及作為電極用之金屬 20 3-3 離子液體的製備 21 3-3-1 ZnCl2-EMIC離子液體的製備 21 3-3-2 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI-BF4)離子液體的製備 21 3-3-3 分析液的製備 22 3-4 實驗儀器及裝置 22 第四章 結果與討論 26 4-1 CuCl-ZnCl2-EMIC離子液體的電化學行為 26 4-2 不同濃度的CuCl於40-60mol% ZnCl2-EMIC離子液體中的電化學行為 28 4-3 CuCl:ZnCl2=1mol%:100mol%於40-60mol% ZnCl2-EMIC離子液體中銅鋅合金的電沉積 30 4-3-1 EDX、TEM、XRD分析 37 4-4 CuCl:ZnCl2=3mol%:100mol%於40-60mol% ZnCl2-EMIC離子液體中銅鋅合金的電沉積 41 4-4-1 EDX、TEM、XRD分析 45 4-4-2 銅鋅合金的置換反應 51 4-5 CuCl:ZnCl2=5mol%:100mol%於40-60mol% ZnCl2-EMIC離子液體中銅鋅合金的電沉積 54 4-5-1 EDX、TEM、XRD分析 58 4-6 硝酸根離子的電催化反應 62 第五章 PbTe在PbCl2-TeCl4-EMIBF4離子液體中的行為 69 5-1 PbCl2在EMI-BF4離子液體中的電化學行為 69 5-1-1 溫度及電極對PbCl2在EMI-BF4離子液體中電化學行為的影響 71 5-1-2 PbCl2在EMI-BF4離子液體中電沉積鉛的成核機制 74 5-1-3 鉛的電沉積 76 5-1-4 XRD分析 81 5-2 TeCl4在EMI-BF4離子液體中的電化學行為 82 5-2-1 TeCl4在EMI-BF4離子液體中電沉積碲的成核機制 85 5-2-2 碲的電沉積 87 5-2-3 EDX、XRD分析 88 5-3 PbCl2-TeCl4在EMI-BF4離子液體中的電化學行為 89 5-3-1 不同濃度的PbCl2於0.05MTeCl4-EMIBF4離子液體中的電化學行為 92 5-3-2 形成PbTe的電化學機制探討 94 5-4 碲化鉛的電沉積 95 5-4-1 0.15MPbCl2與0.05MTeCl4於EMI-BF4離子液體中碲化鉛的電沉積 96 5-4-2 0.25MPbCl2與0.05MTeCl4於EMI-BF4離子液體中碲化鉛的電沉積 98 5-4-3 5MPbCl2與0.05MTeCl4於EMI-BF4離子液體中碲化鉛的電沉積 99 5-5 XRD、XPS分析 100 5-6 紅外光光譜分析碲化鉛鍍層的能隙 104 第六章 結論 105 6-1 銅鋅合金 105 6-2 碲化鉛 106 參考文獻 107 附錄 110

    1.K. R. Seddon, Journal of Chemical Technology and Biotechnology, 1997, 68, 351-356.
    2.T. Torimoto, T. Tsuda, K.-i. Okazaki and S. Kuwabata, Advanced Materials, 2010, 22, 1196-1221.
    3.K. R. Seddon, A. Stark and M. J. Torres, Pure and Applied Chemistry, 2000, 72, 2275-2287.
    4.A. P. Abbott, G. Capper, D. L. Davies, R. K. Rasheed and P. Shikotra, Abstracts of Papers of the American Chemical Society, 2006, 231.
    5.I. Milosev, T. K. Mikic and M. Gaberscek, Electrochimica Acta, 2006, 52, 415-426.
    6.S. Report, Plating Surf. Finish., 1984, 69, 38.
    7.W. J. Vanooij, Rubber Chemistry and Technology, 1984, 57, 421-456.
    8.P. L. Mangonon, The Principles of Material Selection for Engineering Design, Prentice Hall, 1999.
    9.X. Dingl, S. Xiandong and L. Yangui, Research Progress and Future of Copper-Zinc Alloy, 2011.
    10.王蕾, 丁麗麗, 許美榮, 侯樂, 王嘯 and 趙瑋, 山東科學, 2007, 20, 76-78.
    11.Y. Fujiwara and H. Enomoto, Surface & Coatings Technology, 1988, 35, 101-111.
    12.Y. Fujiwara and H. Enomoto, Surface & Coatings Technology, 1988, 35, 113-124.
    13.P. Y. Chen, M. C. Lin and I. W. Sun, Journal of the Electrochemical Society, 2000, 147, 3350-3355.
    14.L. F. Senna, S. L. Diaz and L. Sathler, Journal of Applied Electrochemistry, 2003, 33, 1155-1161.
    15.I. A. Carlos and M. R. H. de Almeida, Journal of Electroanalytical Chemistry, 2004, 562, 153-159.
    16.M. R. H. de Almeida, E. P. Barbano, M. F. de Carvalho, I. A. Carlos, J. L. P. Siqueira and L. L. Barbosa, Surface & Coatings Technology, 2011, 206, 95-102.
    17.S. Kumar, H. K. Zishan, M. A. M. Khan and M. Husain, Current Applied Physics, 2005, 5, 561-566.
    18.Z. H. Dughaish, Physica B-Condensed Matter, 2002, 322, 205-223.
    19.顧家琳, 楊志剛, 鄧海金 and 曾照強, 材料科學與工程概論, 清華大學出版社, 2005.
    20.A. Mondal, N. Mukherjee, S. K. Bhar and D. B. Ee, Thin Solid Films, 2006, 515, 1255-1259.
    21.G.-R. Li, C.-Z. Yao, X.-H. Lu, F.-L. Zheng, Z.-P. Feng, X.-L. Yu, C.-Y. Su and Y.-X. Tong, Chemistry of Materials, 2008, 20, 3306-3314.
    22.A. Yasuda, K. Suto, Y. Takahashi, Y. Kato, Y. Oyama and J.-i. Nishzawa, Journal of Physics and Chemistry of Solids, 2008, 69, 727-729.
    23.X.-D. Wei, C.-F. Cai, B.-P. Zhang, L. Hu, H.-Z. Wu, Y.-G. Zhang, J.-W. Feng, J.-M. Lin, C. Lin, W.-Z. Fang and N. Dai, Journal of Infrared and Millimeter Waves, 2011, 30, 293-296.
    24.K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis and M. G. Kanatzidis, Science, 2004, 303, 818-821.
    25.T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge, Science, 2002, 297, 2229-2232.
    26.F. Xiao, B. Yoo, M. A. Ryan, K.-H. Lee and N. V. Myung, Electrochimica Acta, 2006, 52, 1101-1107.
    27.I. Y. Erdogan, T. Oznuluer, F. Bulbul and U. Demir, Thin Solid Films, 2009, 517, 5419-5424.
    28.F. Golgovici and T. Visan, Chalcogenide Letters, 2011, 8, 487-497.
    29.G. Gunawardena, G. Hills, I. Montenegro and B. Scharifker, Journal of Electroanalytical Chemistry, 1982, 138, 225-239.
    30.P. Allongue and E. Souteyrand, Journal of Electroanalytical Chemistry, 1990, 286, 217-237.
    31.G. Trejo, R. Ortega, Y. Meas, P. Ozil, E. Chainet and B. Nguyen, Journal of the Electrochemical Society, 1998, 145, 4090-4097.
    32.G. Trejo, A. F. Gil and I. Gonzalez, Journal of Applied Electrochemistry, 1996, 26, 1287-1294.
    33.Y. F. Lin and I. W. Sun, Journal of the Electrochemical Society, 1999, 146, 1054-1059.
    34.C. L. Hussey and X. H. Xu, Journal of the Electrochemical Society, 1991, 138, 1886-1890.
    35.M. Avrami, Journal of Chemical Physics, 1939, 7, 1103-1112.
    36.B. Scharifker and G. Hills, Electrochimica Acta, 1983, 28, 879-889.
    37.J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorganic Chemistry, 1982, 21, 1263-1264.
    38.J. R. Sanders, The University of Mississippi, 1987.
    39.P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. DeSouza and J. Dupont, Polyhedron, 1996, 15, 1217-1219.
    40.Z. Macova and K. Bouzek, Journal of Applied Electrochemistry, 2005, 35, 1203-1211.
    41.J.-M. Yang, Y.-T. Hsieh, D.-X. Zhuang and I. W. Sun, Electrochemistry Communications, 2011, 13, 1178-1181.
    42.J.-M. Yang, S.-P. Gou and I. W. Sun, Chemical Communications, 2010, 46, 2686-2688.
    43.B. Keita, I. M. Mbomekalle, L. Nadjo and R. Contant, Electrochemistry Communications, 2001, 3, 267-273.
    44.E. G. S. Jeng and I. W. Sun, Journal of the Electrochemical Society, 1997, 144, 2369-2374.
    45.S. I. Hsiu and I. W. Sun, Journal of Applied Electrochemistry, 2004, 34, 1057-1063.
    46.J. Szymczak, S. Legeai, S. Diliberto, S. Migot, N. Stein, C. Boulanger, G. Chatel and M. Draye, Electrochemistry Communications, 2012, 24, 57-60.
    47.V. Sudha and M. V. Sangaranarayanan, Journal of Physical Chemistry B, 2002, 106, 2699-2707.
    48.D. M. Kolb, Przasnys.M and Gerische.H, Journal of Electroanalytical Chemistry, 1974, 54, 25-38.
    49.M. Bettini and H. J. Richter, Surf. Sci., 1979, 80, 334-343.
    50.吳海飛, 吳珂, 張寒潔, 廖清 and 何丕模, 物理化學學報, 2012, 28, 1252-1256.
    51.J. P. Zhu, S. H. Yu, Z. B. He, J. Jiang, K. Chen and X. Y. Zhou, Chemical Communications, 2005, 5802-5804.

    下載圖示 校內:2018-07-26公開
    校外:2018-07-26公開
    QR CODE