簡易檢索 / 詳目顯示

研究生: 王禹翔
Wang, Yu-Hsiang
論文名稱: 可在空氣中燒結銅鎳合金電阻器之研究
A Study on Cu-Ni Alloy Resistor Sintered in Air Atmosphere
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 75
中文關鍵詞: 合金電阻銅鎳合金鋁端電極銅鋁保護層
外文關鍵詞: alloy resistance, copper-nickel alloy, aluminum electrodes copper-aluminum protective layer
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,人們對於電子元件的精度和可靠性要求越來越高,所以合金電阻的研究也不斷地往前推進,目前也已經發展出了許多不同類型的合金電阻材料,如:銀鈀、銅鎳、銅錳、鎳鉻等。銀鈀等電阻材料能夠在空氣中燒結且保持良好的電性,但是其成本昂貴是最大的缺點,而銅鎳、銅錳、鎳鉻等電阻材料雖然價格較為低廉,卻只能在特殊氣氛下進行燒結。因此,本實驗提出了一個合金電阻能夠在空氣下燒結的製程方式,利用以鋁為核心去做調配的保護層膏,覆蓋在銅鎳膏上面,並且在旁邊順便印上端電極,使得銅鎳合金能夠在空氣下燒結,並且能夠藉由旁邊的端電極量測到內部的銅鎳合金阻值。
    本實驗主要分為三個部分,第一部分是保護層材料的選用,目標是保護層的阻值能夠盡可能的高以防止影響下方銅鎳的阻值。我們使用不同比例以及不同粒徑大小的銅鋁混和膏蓋在銅鎳膏上面並進行850度的燒結,量測每一個樣品保護層的阻值直到絕緣,也會順便觀察下方銅鎳是否有氧化的的情況。
    第二部分是結構上的變動,由於上一部分僅僅是雙層的結構,在這一部分我們會以最佳的保護層材料蓋住銅鎳膏為基礎,向旁邊延伸結構做出端電極,好讓我們能夠採到下方銅鎳的電性,經過SEM以及EDS分析各個結構金屬擴散的情形並進行改良,最後發現到在原有端電極中插入一層小銅大鋁層能夠使介面的阻值進一步的從154 mΩ降到了37.4 mΩ。
    第三部分是不同溫度上的燒結,我們沿用上一部分的最佳結構,再進行不同方式的燒結。我們發現在850度前再預燒一定的溫度能夠有效再降低阻值,因此我們比對了650度、700度、750度的預燒結果,最後確實觀察到隨著預燒溫度的上升,阻值也會隨之下降。預燒750度之後再燒850度,電阻率來到了35*10^(-8)Ω.m,下方的銅鎳合金更為緻密,並且擁有明亮的金屬色。最後,我們又對此樣品送切FIB以觀察更細微的結構,之後發現明亮的銅鎳合金在EDS元素分析下,大部分銅跟鎳的元素會重疊再一起,含氧量也是僅有5%。

    This experiment is divided into three main parts. In the first part, the goal is to achieve a high resistance value for the protective layer in order to prevent any impact on the resistance of the underlying copper-nickel layers. Different proportions and particle sizes of copper-aluminum mixed paste are applied onto the copper-nickel paste. The resistance of each sample's protective layer is measured until insulation occurs, while also observing any potential oxidation of the underlying copper-nickel layers.
    The second part involves structural modifications. Side electrodes are extended from the structure to allow for electrical characterization of the underlying copper-nickel layers. Through SEM and EDS analysis, the diffusion of metals in various structural configurations is examined and improved upon. Ultimately, it was discovered that inserting a layer of small copper and large aluminum into the original side electrodes further reduces the contact resistance from 154 mΩ to 37.4 mΩ.
    The third part examines sintering at different temperatures. It was found that pre-sintering at a certain temperature before reaching 850 degrees effectively reduces resistance. Therefore, pre-sintering results at 650 degrees, 700 degrees, and 750 degrees were compared. It was observed that as the pre-sintering temperature increases, the resistance decreases. After pre-sintering at 750 degrees and subsequent sintering at 850 degrees, the resistivity reached 35 x 10-8Ω.m. The copper-nickel alloy beneath became denser and exhibited a bright metallic color. Finally, FIB cross-sectioning was performed on the sample to observe finer structural details. The analysis revealed that in the bright copper-nickel alloy, most of the copper and nickel elements overlap in EDS elemental analysis, with an oxygen content of only 5%.

    摘要 I EXTENDED ABSTRACT III 致謝 XIX 目錄 XX 圖目錄 XXIII 表目錄 XXVI 第一章 緒論 1 1.1 研究背景 1 1.2 實驗動機 1 1.3 章節概述 3 第二章 文獻回顧 4 2.1 金屬合金 4 2.1.1 銅鎳合金 4 2.1.2 鋁合金 6 2.2 接觸電阻 7 2.3 電阻溫度係數(TCR) 8 2.4 厚膜工程技術 9 2.5 標準莫耳生成焓 10 第三章 實驗方法 13 3.1 實驗結構 13 3.2 實驗步驟 14 3.2.1 金屬膏的調配 14 3.2.2 網版印刷電阻膏 15 3.2.3 樣品燒結及分析 17 3.3 實驗儀器 18 3.3.1 離心攪拌機 18 3.3.2 三滾筒研磨機 19 3.3.3 網版印刷機 19 3.3.4 高溫箱型爐 21 3.4 儀器分析設備 22 3.4.1 示熱差-熱重量同步掃描分析儀(DTG) 22 3.4.2 X射線繞射儀(XRD) 23 3.4.3 掃描電子顯微鏡(SEM) 25 3.4.4 聚焦離子束(FIB) 27 3.4.5 阻抗分析儀(LCR meter) 28 第四章 結果與討論 30 4.1 保護層絕緣性分析 30 4.1.1 燒結溫度設定 30 4.1.2 小銅大鋁保護層 31 4.1.3 小銅小鋁保護層 33 4.1.4 不同玻璃量影響 35 4.2 接觸電阻之分析 40 4.2.1 鋁電極結構 40 4.2.2 鋁電極插入銅鋁層結構-長 42 4.2.3 鋁電極插入銅鋁層結構-短 43 4.2.4 各結構之Cole-Cole plot量測 46 4.3 不同燒結溫度的分析 51 4.3.1 650、700、750度燒結10分鐘加上850燒結10分鐘 51 4.3.2 650、700、750度燒結5分鐘加上850燒結10分鐘 55 4.3.3 650、700、750度燒結15分鐘加上850燒結10分鐘 57 4.3.4 各燒結條件阻值比較 59 4.3.5 FIB結構分析 61 4.3.6 EBSD探討 69 第五章 結論與未來展望 71 5.1 結論 71 5.2 未來展望 72 參考文獻 73

    1. 林柏辰, 一種新穎空氣中燒結合金電阻的研究, in 電機工程學系. 2022, 國立成功大學: 臺灣博碩士論文知識加值系統.
    2. Tec-science, Types of alloys. 2018.
    3. Zhang, Y., microstructures and properties of high entropy alloys. Progress in Materials Science, 2014. 61: p. 1-93.
    4. Pingale, A.D., et al., Recent researches on Cu-Ni alloy matrix composites through electrodeposition and powder metallurgy methods: A review. Materials Today: Proceedings, 2021. 47: p. 3301-3308.
    5. Pingale, A.D., S.U. Belgamwar, and J.S. Rathore, A novel approach for facile synthesis of Cu-Ni/GNPs composites with excellent mechanical and tribological properties. Materials Science and Engineering: B, 2020. 260: p. 114643.
    6. Hlina, J., J. Reboun, and A. Hamacek Study of Copper-Nickel Nanoparticle Resistive Ink Compatible with Printed Copper Films for Power Electronics Applications. Materials, 2021. 14, DOI: 10.3390/ma14227039.
    7. Slimi, M., et al., Structural and microstructural properties of nanocrystalline Cu–Fe–Ni powders produced by mechanical alloying. Powder Technology, 2014. 266: p. 262-267.
    8. Zhang, Y., et al., Evolution of microstructure and properties of an ultrahigh strength Cu–Ni–Sn alloy with low Sn content during the multi-stage thermomechanical treatment. Materials Science and Engineering: A, 2023. 872: p. 144933.
    9. Gunderov, D.V., et al., Cluster structure in amorphous Ti-Ni-Cu alloys subjected to high-pressure torsion deformation. Journal of Alloys and Compounds, 2018. 749: p. 612-619.
    10. Talamantes-Silva, M., et al., Characterization of an Al–Cu cast alloy. Materials Characterization - MATER CHARACT, 2008. 59: p. 1434-1439.
    11. Subramanya Sarma, V., et al., Microstructure and mechanical properties of ultra fine grained Cu–Zn and Cu–Al alloys produced by cryorolling and annealing. Materials Science and Engineering: A, 2008. 489(1): p. 253-258.
    12. Baek, M.-S., et al., Microstructures, tensile properties, and strengthening mechanisms of novel Al-Mg alloys with high Mg content. Journal of Alloys and Compounds, 2023. 950: p. 169866.
    13. Tan, P., et al., Effect of Zn content on the microstructure and mechanical properties of as-cast Al–Zn–Mg–Cu alloy with medium Zn content. Journal of Materials Research and Technology, 2022. 18: p. 2620-2630.
    14. Milenko Braunovic.(1991). electrical contact theory, application and technical Paperback. Machine Press.
    15. Kaiser, C.J. The Resistor Handbook; CJ Publishing: Rogersville, TN, USA, 1998.
    16. 田民波. (2003). 电子封装工程. 清华大学出版社有限公司.
    17. 电子材料导论. 2001: 清华大学出版社.
    18. Tieh-Shou Wu,Toyotaro Shiramatsu,Shan-Nan Chen,New method to study the firing process of thick film copper conductor paste, 成功大學學報, Vol. 14(科技篇), pp. 211-214.
    19. Caballero, L.J., Contact Definition in Industrial Silicon Solar Cells. 2010.
    20. Britannica. The Editors of Encyclopaedia. "Bragg law". Encyclopedia Britannica. 15 Mar. 2022.
    21. Das, H., Characterization of defects and evaluation of material quality of low temperature epitaxial growth. 2010.
    22. 張瑞顯, 厚膜印刷銅鋁電極材料研究, in 電機工程學系. 2022, 國立成功大學: 臺灣博碩士論文知識加值系統.

    無法下載圖示 校內:2028-08-14公開
    校外:2028-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE