簡易檢索 / 詳目顯示

研究生: 王超鴻
Wang, Chao-Hung
論文名稱: 分子束磊晶成長氮化鎵奈米線陣列之矽摻雜濃度對其壓電元件及發電機性質之研究
Dependence of Molecular Beam Epitaxy Grown GaN Nanowire Arrays with Various Si Doping Concentrations on Performance of Nanopiezotronics and Nanogenerators
指導教授: 劉全璞
Liu, Chaun-Pu
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 113
中文關鍵詞: 氮化鎵垂直奈米柱陣列載子屏蔽直流式奈米線壓電發電機奈米壓電電子元件交流式奈米線壓電發電機
外文關鍵詞: GaN nanowire arrays, carrier screening, piezoelectric direct-current single-nanowire nanogenerators, piezo-tronic devices, alternating-current vertical integrated nanogenerators
相關次數: 點閱:79下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究內容主要著重於以分子束磊晶成長氮化鎵奈米線陣列結構,並探討氮化鎵奈米線內部載子濃度對單根直流式奈米線壓電發電機、奈米壓電電子元件及交流式奈米線壓電發電機的性能影響之研究。
    首先探討單根直流式奈米線壓電發電機與奈米壓電電子元件部分,藉由成功製作未摻雜與一系列不同濃度的矽摻雜之氮化鎵奈米線為探討主角,其載子濃度可大幅調整由10^17至10^19 cm^-3,奈米線的載子濃度可由奈米線的發光能隙位置的藍移程度來觀測。對於單根直流式奈米線壓電發電機,其輸出電流隨著載子濃度的上升,由幾乎無輸出電流上升至最大值50 nA,此時的載子濃度為5.63×10^18 cm^-3,隨後隨著更高的載子濃度下,輸出電流則隨之下降,其原因主要在於奈米線內部電阻的下降與內部壓電電場因載子屏蔽效應而減少,兩者相互競爭所造成的結果。而在奈米壓電電子元件部分,蕭特基二極體的能障隨外力的變化決定了力感測器的感測靈敏度,而未摻雜之氮化鎵奈米線具有最佳的感測靈敏度,其值約為26.20 ± 1.82 meV nN^-1,並隨著載子濃度的上升而遞減。以上兩種元件運作原理主要依賴蕭特基二極體的電流電壓特性曲線,電流電壓曲線中的斜率決定了直流式奈米線壓電發電機的發電效能,而起始電壓的變化則是影響了奈米壓電電子元件的性能,實驗結果發現載子濃度同時影響了斜率與起始電壓,進而提供了一個設計指導方針以發展未來高輸出效能之直流式奈米線壓電發電機與高性能之力感測器元件。
    而在交流式奈米奈米線壓電發電機部分,分析內部結構包含保護層、基材以及奈米線內部載子濃度對其輸出效能的影響。實驗結果發現載子濃度對整體的發電性能影響最劇。輸出電壓與電流密度隨著載子濃度的上升而急劇下降,原因在於內部壓電場被自由載子所屏蔽而降低,因此實驗成果發現,若要得到高輸出效能之交流式奈米壓電發電機,則要抑制內部載子濃度以避免屏蔽效應的產生。

    The impact of carrier concentration in MBE-grown GaN nanowire (NW) arrays on semiconducting piezoelectric direct-current single-nanowire nanogenerators (DC-SNWNGs), piezo-tronic devices and alternating-current (AC) vertical integrated nanogenerators (VINGs) is investigated in this study.
    In the case of DC-SNWNGs and piezo-tronic devices, unintentionally doped and Si-doped GaN NW arrays with various carrier concentrations, ranging from 1017 (unintentionally doped) to 1019 cm-3 (heavily doped), are synthesized. For DC-SNWNGs, the output current of individual NWs starts from a negligible level and rises to the maximum of ~50 nA at a doping concentration of 5.63×1018 cm-3 and then falls off with further increases in carrier concentration, due to the competition between the reduction of inner resistance and the screening effect on piezoelectric potential. For piezo-tronic applications, the force sensitivity based on the change of the Schottky barrier height works best for unintentionally doped NWs, reaching 26.20 ± 1.82 meV nN-1 and then decreases with carrier concentration. Although both types of devices share the same Schottky diode, they involve with different characteristics in that the slope of the current-voltage characteristics governs DC-SNWNG devices, while the turn-on voltage determines piezo-tronic devices. Free carriers in piezo-tronic materials can influence the slope and turn-on voltage of the diode characteristics concurrently when subjected to strain. A design guideline for the optimum doping concentration for obtaining the best performance in piezo-tronic devices and SNWNGs is provided in this work.
    As for AC VINGs, the carrier concentration enhancement with increasing Si doping is reflected by a blue shift of the near-band-edge optical emission of GaN NW arrays. The effects of the protection layer, substrate, and carrier concentration of GaN NW arrays on the output performance of VINGs are evaluated, of which carrier concentration is found to be dominant. The output voltage and current density of AC VINGs made of GaN NW arrays strongly decrease with increasing doping concentration because of the enhanced carrier-screening effect to the piezoelectric polarization charges. Consequently, AC VINGs should be composed of piezo-tronic materials with the lowest possible carrier concentration to prevent the screening effect.

    摘要 I ABSTRACT II CHAPTER 1. MOTIVATION AND INTRODUCTION TO III-NITRIDE PIEZO-TRONIC DEVICES AND NANOGENERATORS 1 1.1. GROUP III-NITRIDE SEMICONDUCTING NANOMATERIALS 1 1.2. PIEZOELECTRIC SEMICONDUCTING NANOGENERATORS, PIEZO-TRONIC AND PIEZO-PHOTOTRONIC DEVICES 2 1.3. CHALLENGES IN PIEZOELECTRIC SEMICONDUCTING NANOGENERATORS AND PIEZO-TRONIC DEVICES 4 1.4. MOTIVATION 5 1.5. ORGANIZATION OF THE DISSERTATION 5 CHAPTER 2. THEORETICAL BACKGROUNDS ON THE GROWTH OF VERTICALLY ALIGNED SI-DOPED GAN NANOWIRE ARRAYS, PIEZOELECTRIC NANOGENERATORS AND PIEZO-TRONIC DEVICES 7 2.1. BASIC PROPERTIES AND GROWTH MECHANISM OF VERTICALLY ALIGNED SI-DOPED GAN NANOWIRE ARRAYS 8 2.1.1 CRYSTAL STRUCTURE OF GAN 8 2.1.2 PHYSICAL PROPERTIES OF GAN 9 2.1.3 GROWTH MECHANISM OF VERTICALLY ALIGNED SI-DOPED GAN NANOWIRE ARRAYS 14 2.2. PIEZOELECTRICITY AND PIEZO-POTENTIAL 17 2.3. ELECTRICITY-GENERATING MECHANISM OF DIRECT-CURRENT PIEZOELECTRIC NANOGENERATORS 23 2.4. ELECTRICITY-GENERATING MECHANISM OF ALTERNATING-CURRENT PIEZOELECTRIC NANOGENERATORS 28 2.5. FUNDAMENTAL MECHANISM OF PIEZO-TRONIC DEVICES 37 CHAPTER 3. MOLECULAR BEAM EPITAXIAL GROWTH OF VERTICALLY ALIGNED SI-DOPED GAN NANOWIRE ARRAYS 41 3.1. FACILITIES FOR MATERIALS GROWTH 41 3.1.1 RADIO-FREQUENCY MOLECULAR BEAM EPITAXY SYSTEM 41 3.1.2 SUBSTRATE PREPARATION AND GROWTH CONDITIONS 43 3.2. CHARACTERIZATION OF VERTICALLY ALIGNED SI-DOPED GAN NANOWIRE ARRAYS 44 3.2.1 SAMPLE MORPHOLOGY CHARACTERIZATION 44 3.2.2 MICROSTRUCTURE CHARACTERIZATION OF VERTICALLY ALIGNED SI-DOPED GAN NANOWIRE ARRAYS 48 3.2.3 RAMAN SPECTROSCOPY FOR DETERMINING FREE CARRIER CONCENTRATIONS 54 3.2.4 PHOTOLUMINESCENCE SPECTROSCOPY 60 3.2.5 CONDUCTIVE-ATOMIC FORCE MICROSCOPY (C-AFM) 64 3.2.6 LARGE AREA PIEZOELECTRIC NANOGENERATORS 65 CHAPTER 4. SINGLE NANOWIRE DIRECT-CURRENT PIEZOELECTRIC NANOGENERATORS AND PIEZO-TRONIC DEVICES 66 4.1. RECENT DEVELOPMENT IN III-NITRIDE DIRECT CURRENT NANOGENERATORS AND PIEZO-TRONIC DEVICES 66 4.2. THE EFFECT OF CARRIER CONCENTRATION ON DIRECT-CURRENT NANOGENERATORS AND PIEZO-TRONIC DEVICES 72 4.3. THE CONCLUSIONS THE EFFECTS OF CARRIER CONCENTRATION ON DIRECT CURRENT NANOGENERATORS AND PIEZO-TRONIC DEVICES 85 4.4. SUPPORTING INFORMATION ON CHANGES OF SCHOTTKY BARRIER HEIGHT AND FORCE SENSITIVITY 85 CHAPTER 5. LARGE-AREA ALTERNATING-CURRENT PIEZOELECTRIC NANOGENERATORS 88 5.1. RECENT DEVELOPMENT IN III-NITRIDE ALTERNATING-CURRENT NANOGENERATORS 88 5.2. THE EFFECT OF CARRIER CONCENTRATION ON ALTERNATING-CURRENT NANOGENERATORS 89 5.3. THE CONCLUSIONS OF THE EFFECT OF CARRIER CONCENTRATION ON ALTERNATING-CURRENT NANOGENERATORS 97 5.4. SUPPORTING INFORMATION ON BEAM EQUIVALENT PRESSURE AND SUBSTRATE EFFECT 98 CHAPTER 6. FUTURE DIRECTIONS AND CONCLUSIONS 100 6.1. FUTURE PROSPECTS 100 6.2. CONCLUSIONS 102 CHAPTER 7.REFERENCES 104

    [1] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, Z. Ling, G. Harbers, M. G. Craford, Display Technology, Journal of 2007, 3, 160.
    [2] M. H. Crawford, Selected Topics in Quantum Electronics, IEEE Journal of 2009, 15, 1028.
    [3] H.-M. Kim, Y.-H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, K. S. Chung, Nano Letters 2004, 4, 1059.
    [4] F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, C. M. Lieber, Nano Letters 2005, 5, 2287.
    [5] C.-H. Wang, Y.-W. Huang, S.-E. Wu, C.-P. Liu, Applied Physics Letters 2013, 103, 233113.
    [6] A. Bhuiyan, K. Sugita, A. Hashimoto, A. Yamamoto, Photovoltaics, IEEE Journal of 2012, 2, 276.
    [7] R.-S. Chen, H.-Y. Chen, C.-Y. Lu, K.-H. Chen, C.-P. Chen, L.-C. Chen, Y.-J. Yang, Applied Physics Letters 2007, 91, 223106.
    [8] R.-S. Chen, S.-W. Wang, Z.-H. Lan, J. T.-H. Tsai, C.-T. Wu, L.-C. Chen, K.-H. Chen, Y.-S. Huang, C.-C. Chen, Small 2008, 4, 925.
    [9] F. González-Posada, R. Songmuang, M. Den Hertog, E. Monroy, Nano Letters 2011, 12, 172.
    [10] Y. J. Hwang, C. H. Wu, C. Hahn, H. E. Jeong, P. Yang, Nano Letters 2012, 12, 1678.
    [11] J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, R. J. Saykally, Nature Materials 2002, 1, 106.
    [12] H. Gao, A. Fu, S. C. Andrews, P. Yang, Proceedings of the National Academy of Sciences 2013, 110, 865.
    [13] H. J. Choi, H. K. Seong, J. Chang, K. I. Lee, Y. J. Park, J. J. Kim, S. K. Lee, R. He, T. Kuykendall, P. Yang, Advanced Materials 2005, 17, 1351.
    [14] Z. L. Wang, J. Song, Science 2006, 312, 242.
    [15] X. Wang, J. Song, J. Liu, Z. L. Wang, Science 2007, 316, 102.
    [16] R. Yang, Y. Qin, L. Dai, Z. L. Wang, Nature Nanotechnology 2009, 4, 34.
    [17] S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang, Nature Nanotechnology 2010, 5, 366.
    [18] G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, Z. L. Wang, Nano Letters 2012, 12, 3086.
    [19] W. Wu, Y. Wei, Z. L. Wang, Advanced Materials 2010, 22, 4711.
    [20] W. Wu, X. Wen, Z. L. Wang, Science 2013, 340, 952.
    [21] C. Pan, L. Dong, G. Zhu, S. Niu, R. Yu, Q. Yang, Y. Liu, Z. L. Wang, Nature Photonics 2013, 7, 752.
    [22] Z. L. Wang, MRS Bulletin 2012, 37, 814.
    [23] J. M. Wu, C.-Y. Chen, Y. Zhang, K.-H. Chen, Y. Yang, Y. Hu, J.-H. He, Z. L. Wang, ACS Nano 2012, 6, 4369.
    [24] R. Araneo, C. Falconi, Nanotechnology 2013, 24, 265707.
    [25] F. Boxberg, N. Søndergaard, H. Q. Xu, Nano Letters 2010, 10, 1108.
    [26] N. J. Ku, C. H. Wang, J. H. Huang, H. C. Fang, P. C. Huang, C. P. Liu, Advanced Materials 2013, 25, 861.
    [27] Y. Gao, Z. L. Wang, Nano Letters 2009, 9, 1103.
    [28] G. Romano, G. Mantini, A. Di Carlo, A. D'Amico, C. Falconi, Z. L. Wang, Nanotechnology 2011, 22, 465401.
    [29] R. Hinchet, S. Lee, G. Ardila, L. Montès, M. Mouis, Z. L. Wang, Advanced Functional Materials 2014, 24, 971.
    [30] M.-P. Lu, M.-Y. Lu, L.-J. Chen, Nano Energy 2012, 1, 247.
    [31] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, S. Kurtz, Journal of Applied Physics 2003, 94, 6477.
    [32] R. Armitage, K. Tsubaki, Nanotechnology 2010, 21, 195202.
    [33] H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee, S. Gwo, Applied Physics Letters 2010, 97, 073101.
    [34] A. Khan, K. Balakrishnan, T. Katona, Nature Photonics 2008, 2, 77.
    [35] T. Mitate, Y. Sonoda, N. Kuwano, Physica Status Solidi (a) 2002, 192, 383.
    [36] 賴彥霖, “Microstructure and Optical Properties of InGaN/GaN Multiple Quantum Wells Comprised fo InGaN Dots”, Dissertation for Doctor of Philosophy in Department of Materials Science and Engineering, National Cheng Kung University, 2006.
    [37] B. Gil, Group III Nitride Semiconductor Compounds, Oxford, New York, 1998.
    [38] O. Madelung, Semiconductors: Data Handbook, Springer, 2003.
    [39] M. A. Reshchikov, H. Morkoç, Journal of Applied Physics 2005, 97, 061301.
    [40] W. Li, A. Li, Thin Solid Films 2001, 401, 279.
    [41] S. N. Svitasheva, A. M. Gilinsky, Applied Surface Science 2013, 281, 109.
    [42] S. N. Mohammad, H. Morkoç, Progress in Quantum Electronics 1996, 20, 361.
    [43] Q. Z. Liu, S. S. Lau, Solid-State Electronics 1998, 42, 677.
    [44] F. Bernardini, V. Fiorentini, D. Vanderbilt, Physical Review B 1997, 56, R10024.
    [45] R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, H. Lüth, Applied Physics Letters 2007, 90, 123117.
    [46] V. Ruth, J. P. Hirth, The Journal of Chemical Physics 1964, 41, 3139.
    [47] V. G. Dubrovskii, G. E. Cirlin, I. P. Soshnikov, A. A. Tonkikh, N. V. Sibirev, Y. B. Samsonenko, V. M. Ustinov, Physical Review B 2005, 71, 205325.
    [48] M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, F. Julien, Nanotechnology 2007, 18, 385306.
    [49] E. Calleja, J. Ristić, S. Fernández-Garrido, L. Cerutti, M. A. Sánchez-García, J. Grandal, A. Trampert, U. Jahn, G. Sánchez, A. Griol, B. Sánchez, Physica Status Solidi (b) 2007, 244, 2816.
    [50] C. L. Hsiao, L. W. Tu, T. W. Chi, H. W. Seo, Q. Y. Chen, W. K. Chu, Journal of Vacuum Science & Technology B 2006, 24, 845.
    [51] R. Songmuang, O. Landré, B. Daudin, Applied Physics Letters 2007, 91, 251902.
    [52] K.-Y. Hsu, C.-Y. Wang and Chuan-Pu Liu, Journal of the Electrochemical Society 2010, 157, K109.
    [53] S. Ishizawa, A. Kikuchi, K. Kishino, Physica Status Solidi (c) 2008, 5, 1879.
    [54] K. K. Shunsuke Ishizawa, and Akihiko Kikuchi, Applied Physics Express 2008, 1, 015006.
    [55] Z. L. Wang, Nano Today 2010, 5, 540.
    [56] G. Mantini, Y. Gao, A. D’Amico, C. Falconi, Z. Wang, Nano Research 2009, 2, 624.
    [57] Z. Shao, L. Wen, D. Wu, X. Zhang, S. Chang, S. Qin, Journal of Applied Physics 2010, 108, 124312.
    [58] M. H. Zhao, Z. L. Wang, S. X. Mao, Nano Letters 2004, 4, 587.
    [59] Z. L. Wang, Advanced Functional Materials 2008, 18, 3553.
    [60] J. Zhou, Y. Gu, P. Fei, W. Mai, Y. Gao, R. Yang, G. Bao, Z. L. Wang, Nano Letters 2008, 8, 3035.
    [61] Z. Gao, J. Zhou, Y. Gu, P. Fei, Y. Hao, G. Bao, Z. L. Wang, Journal of Applied Physics 2009, 105, 113707.
    [62] Y. S. Zhou, K. Wang, W. Han, S. C. Rai, Y. Zhang, Y. Ding, C. Pan, F. Zhang, W. Zhou, Z. L. Wang, ACS Nano 2012, 6, 6478.
    [63] W. Han, Y. Zhou, Y. Zhang, C.-Y. Chen, L. Lin, X. Wang, S. Wang, Z. L. Wang, ACS Nano 2012, 6, 3760.
    [64] J. Zhou, P. Fei, Y. Gu, W. Mai, Y. Gao, R. Yang, G. Bao, Z. L. Wang, Nano Letters 2008, 8, 3973.
    [65] M. B. Panish, Science 1980, 208, 916.
    [66] 古乃任, “Nanopiezotronics and Nanogenerators of Obliquely Aligned InN Nanowire Array Grown by Molecular Beam Epitaxy”, Dissertation for Doctor of Philosophy in Department of Materials Science and Engineering, National Cheng Kung University, 2013.
    [67] SU-8000, Hitachi High Technology, Japan
    [68] JEM-2100F, JEOL Ltd., Japan
    [69] D. B. Williams, C. B. Carter, Transmission Electron Microscopy, Plenum, New York, 1996.
    [70] H. Hiroshi, Journal of Physics: Condensed Matter 2002, 14, R967.
    [71] I. Ahmad, M. Holtz, N. N. Faleev, H. Temkin, Journal of Applied Physics 2004, 95, 1692.
    [72] K. Jeganathan, R. K. Debnath, R. Meijers, T. Stoica, R. Calarco, D. Grützmacher, H. Lüth, Journal of Applied Physics 2009, 105, 123707.
    [73] Micro-Raman使用手冊, 國立成功大學微奈米科技研究中心.
    [74] 徐煥棠, “摻雜稀土元素於磷砷化銦鎵之特性研究”, Master Thesis, 私立中原大學, 2001.
    [75] 許廣元, “Growth and Physical Properties of III-Nitride Nanostructures by Molecular Beam Epitaxy”, Dissertation for Doctor of Philosophy in Department of Materials Science and Engineering, National Cheng Kung University, 2010.
    [76] S. R. Anton, H. A. Sodano, Smart Materials and Structures 2007, 16, R1.
    [77] L. Lin, C. H. Lai, Y. Hu, Y. Zhang, X. Wang, C. Xu, R. L. Snyder, L. J. Chen, Z. L. Wang, Nanotechnology 2011, 22, 475401.
    [78] C.-T. Huang, J. Song, W.-F. Lee, Y. Ding, Z. Gao, Y. Hao, L.-J. Chen, Z. L. Wang, Journal of the American Chemical Society 2010, 132, 4766.
    [79] C.-T. Huang, J. Song, C.-M. Tsai, W.-F. Lee, D.-H. Lien, Z. Gao, Y. Hao, L.-J. Chen, Z. L. Wang, Advanced Materials 2010, 22, 4008.
    [80] X. Wang, J. Song, F. Zhang, C. He, Z. Hu, Z. Wang, Advanced Materials 2010, 22, 2155.
    [81] Y.-F. Lin, J. Song, Y. Ding, S.-Y. Lu, Z. L. Wang, Applied Physics Letters 2008, 92, 022105.
    [82] Z. Zhong, F. Qian, D. Wang, C. M. Lieber, Nano Letters 2003, 3, 343.
    [83] F. Qian, S. Gradečak, Y. Li, C.-Y. Wen, C. M. Lieber, Nano Letters 2005, 5, 2287.
    [84] Y. Dong, B. Tian, T. J. Kempa, C. M. Lieber, Nano Letters 2009, 9, 2183.
    [85] C. Hahn, Z. Zhang, A. Fu, C. H. Wu, Y. J. Hwang, D. J. Gargas, P. Yang, ACS Nano 2011, 5, 3970.
    [86] Q. Yang, X. Guo, W. Wang, Y. Zhang, S. Xu, D. H. Lien, Z. L. Wang, ACS Nano 2010, 4, 6285.
    [87] Q. Yang, W. Wang, S. Xu, Z. L. Wang, Nano letters 2011, 11, 4012.
    [88] Y. Yang, W. Guo, Y. Zhang, Y. Ding, X. Wang, Z. L. Wang, Nano Letters 2011, 11, 4812.
    [89] R. Yu, L. Dong, C. Pan, S. Niu, H. Liu, W. Liu, S. Chua, D. Chi, Z. L. Wang, Advanced Materials 2012, 24, 3532.
    [90] Y. S. Zhou, R. Hinchet, Y. Yang, G. Ardila, R. Songmuang, F. Zhang, Y. Zhang, W. Han, K. Pradel, L. Montès, M. Mouis, Z. L. Wang, Advanced Materials 2013, 25, 883.
    [91] N. J. Ku, J. H. Huang, C. H. Wang, H. C. Fang, C. P. Liu, Nano Letters 2012, 12, 562.
    [92] R. Yu, W. Wu, Y. Ding, Z. L. Wang, ACS Nano 2013, 7, 6403.
    [93] R. Araneo, G. Lovat, P. Burghignoli, C. Falconi, Advanced Materials 2012, 24, 4719.
    [94] C. Wetzel, W. Walukiewicz, E. E. Haller, J. Ager, III, I. Grzegory, S. Porowski, T. Suski, Physical Review B 1996, 53, 1322.
    [95] J. Liu, J. Huang, X. Gong, J. Wang, K. Xu, Y. Qiu, D. Cai, T. Zhou, G. Ren, H. Yang, CrystEngComm 2011, 13, 5929.
    [96] J. Liu, P. Fei, J. Zhou, R. Tummala, Z. L. Wang, Applied Physics Letters 2008, 92, 173105.
    [97] B. S. Simpkins, M. A. Mastro, C. R. Eddy, P. E. Pehrsson, Journal of Applied Physics 2008, 103, 104313.
    [98] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles, 4th edition, McGraw-Hill company, New York, 2012.
    [99] Y. S. Zhou, R. Hinchet, Y. Yang, G. Ardila, R. Songmuang, F. Zhang, Y. Zhang, W. Han, K. Pradel, L. Montes, M. Mouis, Z. L. Wang, Advanced Materials 2013, 25, 883.
    [100] Y. Zhang, Y. Hu, S. Xiang, Z. L. Wang, Applied Physics Letters 2010, 97, 033509.
    [101] Y. Liu, Q. Yang, Y. Zhang, Z. Yang, Z. L. Wang, Advanced Materials 2012, 24, 1410.
    [102] J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, Z. L. Wang, Nano Letters 2007, 8, 328.
    [103] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Nano Letters 2010, 10, 3151.
    [104] Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, Z. L. Wang, Nano Letters 2011, 11, 2572.
    [105] Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z. L. Wang, Nano Letters 2010, 10, 5025.
    [106] J. I. Sohn, S. N. Cha, B. G. Song, S. Lee, S. M. Kim, J. Ku, H. J. Kim, Y. J. Park, B. L. Choi, Z. L. Wang, J. M. Kim, K. Kim, Energy & Environmental Science 2013, 6, 97.
    [107] K. C. Pradel, W. Wu, Y. Zhou, X. Wen, Y. Ding, Z. L. Wang, Nano Letters 2013, 13, 2647.
    [108] T. T. Pham, K. Y. Lee, J.-H. Lee, K.-H. Kim, K.-S. Shin, M. K. Gupta, B. Kumar, S.-W. Kim, Energy & Environmental Science 2013, 6, 841.

    無法下載圖示 校內:2020-01-27公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE