簡易檢索 / 詳目顯示

研究生: 呂建財
Lu, Chien-tsai
論文名稱: 鋼放射率特徵之研究與多光譜輻射測溫法之應用
Study of Emissivity Characteristics and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models for Steel
指導教授: 溫昌達
Wen, Chang-da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 103
中文關鍵詞: 放射率輻射強度輻射測溫法多光譜輻射測溫法
外文關鍵詞: radiation intensity, steel, emissivity, MRT, radiation thermometry
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是針對不銹鋼(AISI 420與AISI 630)、熱作工具鋼(AISI H10與AISI H13)與空冷工具鋼(AISI A2與AISI A6)在700K、800K與900K時,其放射率的實驗分析與利用多光譜輻射測溫法(MRT)去推測溫度的結果之探討。而所使用的放射率模型為HHR、IST、IST*(IST的另一種型式)、IWS、WLT與WLT*(WLT的另一種型式)等形式。目的在找出各種不同情況下都適用的多光譜放射率模型。
    放射率分析上,(1)在研究範圍內(2.91μm ~ 4.13μm)大多呈現隨波長增加而下降的趨勢;(2)並且在3小時前有較大的變動,3小時之後隨時間的變化則趨於穩定;(3)受到表面氧化與表面顏色變化的影響,在700K與800K之間放射率多為上升,而900K因為表面顏色由灰黑色轉成暗紅色,導致整體放射率下降或上升幅度較小;(4)而對高鉻含量的材料而言,因為鉻氧化層的保護作用,放射率多為偏低。
    溫度推測上,(1)整體來看誤差多在10%以內,其中以IWS與WLT兩個放射率模型表現最佳,並且面對不同外在條件變化時,穩定度較其他模型為高。(2)在最小平方法的曲線迴歸上,推論的輻射強度結果若能越貼近原始資料點的分布情形時,將有更準確的推論溫度結果,進一步從推論出的放射率來觀察,只要推論出的放射率分布行為越接近真實情況,所得到的溫度也將越準確。 (3)MRT所使用的波長數之多寡,在本研究中區分為最少所需的波長數n與最多可用的波長數N,從結果發現其影響溫度推測的準確性並不明顯,但若將n波長數之MRT與單波長輻射測溫法(SRT)相比,則能清楚發現增加波長數的確有效改善推測的溫度誤差。(4)放射率在3小時後趨於穩定,也因此放射率隨時間變動較小的情況下,多光譜輻射測溫法的準確性將會有所提高,此亦說明氧化層在三小時時已經接近完全發展。(5)當放射率大於0.6時,各種放射率模型多能有不錯表現,尤其IWS、WLT與IST*都很適用。(6)在700K到800K時,因為氧化效應和表面變黑使得放射率提高,推論的效果變得更好;而在800K到900K時,卻因為熔融狀態的開始而表面變暗紅色使得放射率較不規律,甚至某些試件較800K時為低,因此誤差反而比800K時要大。

    This study includes experimental investigation of surface emissivity and analysis of inferred temperature by multispectral radiation thermometry (MRT) for stainless steel (AISI 420 and AISI 630), hot work tool steel (AISI H10 and AISI H13) and cold work tool steel (AISI A2 and AISI A6) at 700K, 800K and 900K. Six emissivity models, HHR, IST, IST* (another form of IST), IWS, WLT and WLT* (another form of WLT) are used to examine the MRT on steel surface temperature determination. The goal of this study is to find the best MRT emissivity model which can well compensate the steel emissivity variations and accurately infer the surface temperature.
    For steel emissivity behaviors, (1) overall, emissivity decreases with increasing wavelength in the wavelength range from 2.91 to 4.13 μm; (2) due to surface oxidation and discoloration, emissivity increases between 700 and 800 K. However, between 800 and 900 K, the onset of melt is observed and causes the decrease in emissivity; (3) for steel with high chromium, emissivity is usually lower than others because of the chromium oxide protection layer; (4) emissivity becomes fairly constant after the 3rd hour, which points to the surface oxidation becoming fully developed.
    For the examination of MRT emissivity models on steel, (1) most models provide the percent error of inferred temperature under 10%. IWS and WLT emissivity models show the best overall stability and accuracy for different alloys and temperatures; (2) for least-squares technique, the closer the generated intensity and measured one, the more accurate inferred temperature. Also, if the emissivity model can well represent the real emissivity behaviors, the more accurate inferred temperature can be achieved; (3) increasing number of wavelength does not significantly improve measurement accuracy while applying MRT. However, MRT indeed provides better performance than SRT; (4) constant emissivity enhances temperature prediction by MRT following the initial 3 hours period; (5) when steel emissivity value is higher than 0.6, all emissivity models examined in this study provide good results, especially IWS, WLT and IST*; (6) additionally, the emissivity change due to aforementioned temperature effects results in the temperature measurement accuracy improving between 700 and 800 K and deteriorating between 800 and 900 K.

    目錄 摘要 i Abstract iii 誌謝 v 目錄 vi 表目錄 ix 圖目錄 xi 符號說明 xiii 第一章 緒論 1 1-1 研究動機 1 1-2 輻射原理及量測 3 1-3 多光譜輻射測溫法(MRT) 6 1-4 文獻回顧 10 1-5 研究目的 12 1-6 本文架構 13 第二章 實驗方法 14 2-1 實驗架構 14 2-2 實驗步驟 17 第三章 放射率模型 20 3-1 放射率模型 20 3-1-1 Hagen-Rubens Relation (HRR)放射率模型 20 3-1-2 Inverse Spectral Temperature (IST)放射率模型 24 3-1-3 Inverse Wavelength Squared (IWS)放射率模型 25 3-1-4 Wavelength-Temperature (WLT)放射率模型 25 3-1-5 HRR、IST、IWS與WLT等形式之放射率模型的比較 26 3-2 以最小平方法推導MRT所使用之放射率模型 27 3-2-1 以非線性最小平方法推導MRT所使用之HRR放射率模型 27 3-2-2 以線性最小平方法推導MRT所使用之IST與IST*放射率模型 29 3-2-3 以非線性最小平方法推導MRT所使用之IWS放射率模型 31 3-2-4 以擬線性最小平方法推導MRT所使用之WLT與WLT*放射率模型 32 第四章 鋼表面放射率之實驗結果與MRT溫度誤差分析 35 4-1 鋼的表面放射率之實驗結果 35 4-1-1 放射率對波長區段的分布情形 35 4-1-2 放射率隨溫度變化之分布情形 36 4-1-3不同鋼材對放射率之影響 37 4-1-4 放射率隨時間增加的變化 38 4-2 多光譜輻射測溫法之溫度誤差分析 38 4-2-1 各種放射率模型使用於MRT之溫度誤差 39 4-2-2 曲線迴歸之結果與推測之溫度誤差的比較 40 4-2-3 平均誤差與平均誤差之標準差的探討 41 4-2-4 波長數對溫度誤差的影響 42 4-2-5 時間對溫度誤差的影響 43 4-2-6 放射率大小對溫度誤差的影響 44 4-2-7不同真實溫度對溫度誤差的影響 45 第五章 結論與未來展望 46 5-1 結論 46 5-1-1 鋼的表面放射率特徵 46 5-1-2 多光譜輻射測溫法的應用分析 47 5-2未來展望 49 參考文獻 50 附錄 93 自述 103 表目錄 表1.1 線性放射率模型(LEM)之多光譜輻射測溫法在鋼與不銹鋼上的實驗結果 56 表1.2 多光譜輻射測溫法應用HRR、IST、LLE及LEM等放射率模型在A-Series鋼材之溫度分析結果 57 表1.3 多光譜輻射測溫法應用HRR、IST、LLE及LEM 等放射率模組在HSLA、LC、MLS 以及ULC鋼材之結果 58 表2.1 本實驗所選取之鋼材與其實際應用 59 表2.2 本實驗所選取之鋼材的組成元素 60 表3.1 本實驗所選取的放射率模型之數學式 61 表4.1 多光譜輻射測溫法於初始量測所推測出的表面溫度之誤差結果 62 表4.2 承接表4.1,將不同溫度下,每種鋼材最好的推測結果與其相對應的放射率模型 63 表4.3 各種放射率模型在平均誤差與平均誤差之標準差上的分析 64 表4.4 承接表4.1,多光譜輻射測溫法在不同溫度下,各種鋼合金的溫度誤差對波長數目之分析 65 表4.5 承接表4.3,將不同溫度下,最少波長數n所得到的最好結果之放射率模型對SRT的比較 66 表4.6 在900K下,將初始量測所推測之表面溫度的誤差(表4.1)與第三小時放射率較穩定後的量測值所推測出的溫度之誤差比較 67 表4.7 在所設定的三種放射率範圍內,僅選取5%以內的溫度誤差來顯示使用最少波長數(n)時的多光譜輻射測溫法之適用性 68 表4.8承接表4.1,不同溫度對於溫度誤差的影響之統計結果 69 圖目錄 圖1.1 在相同溫度之下,真實物體與黑體的輻射強度隨波長之分布 70 圖1.2 Planck分布和Wien分布的黑體輻射強度值在不同溫度下隨波長的變化。以及Wien氏位移定律 71 圖1.3 輻射計所量測到的輻射強度值之四項組成 72 圖1.4 正合法與最小平方法之迴歸曲線示意圖 73 圖1.5 60°的表面粗糙凹槽,多重反射的示意圖 74 圖1.6 冷軋碳鋼,ASTM STP 895之放射率對波長之分布 75 圖1.7 各種鋼之表面放射率 76 圖1.8 各種鋼與其他合金之表面放射率 77 圖2.1 整體實驗架構 78 圖2.2 ES100之可視量測範圍(Field of View)與可視角度為0.5度 79 圖2.3 加熱系統 80 圖2.4 實驗試件之表面形貌變化與平均粗糙度值 81 圖2.5 實驗試件之電子顯微鏡掃描圖,皆為放大40倍 82 圖2.6 光譜儀對黑體之校正結果 83 圖4.1 在700K時,對整個測量的波長區段,三種不同類別的鋼,其放射率隨波長變化的分布 84 圖4.2 在不同溫度下,材料的放射率隨波長變化之分布(一) 85 圖4.3 在不同溫度下,材料的放射率隨波長變化之分布(二) 86 圖4.4 各種鋼材在不同溫度下,放射率隨波長變化的情形 87 圖4.5 在不同溫度之下,選取一特定波長為3.51μm,各種鋼合金其隨時間增加的變化情形 88 圖4.6 將表4.1轉換成柱狀圖來顯示(一) 89 圖4.7 將表4.1轉換成柱狀圖來顯示(二) 90 圖4.8 將表4.1轉換成柱狀圖來顯示(三) 91 圖4.9 MRT配合IST、IWS和WLT等模型在AISI A6於800K利用N組資料點時,推測的與真實的輻射強度和放射率之關係。 92

    1.Dail, G. J., Fuhrman, M. G. and DeWitt, D. P., “Evaluation and Extension of the Spectral-Ratio Radiation Thermometry Method,” Proceedings 4th Int. Aluminum Extrusion Technology Seminar, Chicago, IL, Vol. 2, pp. 209-213, 1988.
    2.DeWitt, D. P., “Introduction to Radiation Thermometry,” Proceedings of the Aluminum Association Workshop on Sensors, pp. 19-39, Atlanta, May 1986.
    3.Dmitriev, V. D. and Kholopov, G. K., “Radiant Emissivity of Tungsten in the Infrared Region of the Spectrum,” Zhurnal Prikladnoi Spektroskopii, Vol. 2, No. 6, pp. 481-488, 1965.
    4.Doloresco, B. K., “Review of Multispectral Radiation Thermometry and Development of Constrained Minimization Method,” M. S. Thesis, Purdue University, school of Mechanical Engineering, West Lafayette, Dec 1986.
    5.Duvaut, Th., Georgeault, D. and Beaudoin, J.L., “Multiwavelength Infrared Pyrometer: Optimization and Computer Simulations,” Infrared Physics & Technology, Vol. 36, pp. 1089-1103, 1995.
    6.Gardner, J. L., Jones, T. P. and Davies, M. R., “A Six-Wavelength Radiation Pyrometer,” High Temperature-High Pressures, Vol. 13, pp. 459-466, 1981.
    7.Haugh, M. J., “Infrared Thermometry for Low Emissivity Metals,” ISA Transactions, Vol. 22, No. 3, pp. 27-31, 1983.
    8.Haugh M. J., “Radiation Thermometry in the Aluminum Industry,” Theory and Practice of Radiation Thermometry, D. P. DeWitt and G. D. Nutter, ed., John Wiley and Sons, New York, pp. 905-971, 1988.
    9.Incropera F. P. and DeWitt, D. P., “Fundamentals of Heat and Mass Transfer,” 5th ed, John Wiley and Sons, New York, pp. 700-756, 2002.
    10.Iuchi, T., Ohno, J. and Kusaka, R., “Temperature Measurement System of Steel Strips in a Continuous Annealing Furnace,” Transactions of the Iron and Steel Institute of Japan, Vol. 16, pp. 195-203, 1976.
    11.Ji, J., Gore, J. P., Sivathanu, Y. R. and Lim, J., “Fast Infrared Array Spectrometer used for Radiation Measurements of Lean Premixed Flames,” Proceedings of NHTC'00, 34th National Heat Transfer Conference, Pittsburgh, PA, pp. 1-6, 2000.
    12.Khan, M. A., Allemand C. and Eagar, T. W., “Noncontact Temperature Measurement. I. Interpolation Based Techniques,” Temperature Measurement, Vol. 62, pp. 392-402, 1991.
    13.Khan, M. A., Allemand C. and Eagar, T. W., “Noncontact Temperature Measurement. II. Least Squares Based Techniques,” Temperature Measurement, Vol. 62, pp. 403-409, 1991.
    14.Mazikowski, A. and Chrzanowski, K., “Non-Contact Multiband Method for Emissivity Measurement,” Infrared Physics & Technology, Vol. 44, pp. 91-99, 2003.
    15.Meriaudeau, F., Renier, E. and Truchetet, F., “Temperature Imaging and Image Processing in the Steel Industry,” Optical Engineering, Vol. 35, No. 12, pp. 3470-3481, 1996.
    16.Meriaudeau, F., Legrand, A. C. and Gorria, P., “Real Time Multispectral High Temperature Measurement: Application to Control in the Industry,” Proceedings of SPIE-IS&T Electronic Imaging, SPIE, Vol. 5011, pp. 234-242, 2003.
    17.Mihalow, F. A., “Radiation Thermometry in the Steel Industry,” Theory and Practice of Radiation Thermometry, D. P. DeWitt and G. D. Nutter, ed., John Wiley and Sons, New York, pp. 861-904, 1988.
    18.Modest, M. F., “Radiative Heat Transfer,” 2nd ed, Academic Press, pp. 75-79, 2003.
    19.Otsuka, A., Hosono, K., Tanaka, R., Kitagawa, K. and Arai, N., “A Survey of Hemispherical Total Emissivity of the Refractory Metals in Practical Use,” Energy, Vol. 30, pp. 535-543, 2005.
    20.Pantsar, H. and Kujanpää, V., “Effect of Oxide Layer Growth on Diode Laser Beam Transformation Hardening of Steels,” Surface & Coatings Technology, Vol. 200, pp. 2627-2633, 2006.
    21.Peacock, G. R., “A Review of Non-contact Process Temperature Measurement in Steel Manufacturing,” Part of the SPIE Conference on Thermosense XXI, pp. 171-189, April 1999.
    22.Pellerin, M. A., “Multispectral Radiation Thermometry: Emissivity Compensation Algorithm,” M.S. Thesis, Purdue University, school of Mechanical Engineering, 1990.
    23.Pellerin, M. A., “Multispectral Radiation Thermometry for Industrial Application,” PhD Thesis, Purdue University, school of Mechanical Engineering, Dec 1999.
    24.Smolik, G. R., McCarthy, K. A., Garmack, W. J., and Coates, K., “Mobilization from Austenitic Stainless Steel in Air and Steam: Recent Test, Compilation of Data from Tests to Data, and Resulting Dose Calculations,” Fusion Engineering, 17th IEEE/NPSS Symposium, Vol. 1, pp. 161-166, 1997.
    25.Tago, Y., Akimoto, F., Kitagawa, K., and Arai, N., “Measurements of Surface Temperature and Emissivity by Two-Dimensional Four-Color Thermometry with Narrow Bandwidth,” Energy, Vol. 30, pp. 485-495, 2005.
    26.Tanaka, F. and Ohira, H., “Thermometry Reestablished by Automatic Compensation of Emissivity; The TRACE Method,” Temperature, its measurement and control in science and industry, Vol. 6, pp. 895-900, 1992.
    27.Tsai, B. K., Shoemaker, R. L., Dewitt, D. P., Cowans, B. A., Dardas, Z., Delgass, W. N., and Dail, G. J., “Dual-Wavelength Radiation Thermometry: Emissivity Compensation Algorithms,” International Journal of Thermophysics, Vol. 11(1), pp269-281, 1990.
    28.Wen, C., and Mudawar, I., “Experimental Investigation of Emissivity of Aluminum Alloys and Temperature Determination Using Multispectral Radiation Thermometry (MRT) Algorithms,” Journal of Materials Engineering and Performance, Vol. 11, pp. 551-562, 2002.
    29.Wen, C., and Mudawar, I., “Emissivity Characteristics of Roughened Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivity models,” International Communications in Heat and Mass Transfer, Vol. 47, pp. 3591-3605, 2005.
    30.Wen, C., and Mudawar, I., “Emissivity Characteristics of Polished Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) emissivity models,” International Communications in Heat and Mass Transfer, Vol. 48, pp. 1316-1329, 2005.
    31.Wen, C., “Emissivity Characteristics of Aluminum Alloy Surfaces and Assessment of Multispectral Radiation Thermometry (MRT) Emissivity Models,” PhD Thesis, Purdue University, school of Mechanical Engineering, August 2005.
    32.Wen, C., and Mudawar, I., “Modeling the Effects of Surface Roughness on the Emissivity of Aluminum Alloys,” International Communications in Heat and Mass Transfer, Vol.49, pp. 4279-4289, 2006.
    33.Wen, C., and Mudawar, I., “Mathematical Determination of Emissivity and Surface Temperature of Aluminum Alloys using Multispectral Radiation Thermometry,” International Communications in Heat and Mass Transfer, Vol. 33, pp. 1063-1070, 2006.
    34.Zaitsev, V. A., Gorbatenko, I. V. and Taimarov,M. A., “Emissivity of Steels and Alloys in the Spectral Region 2-13 ,” Journal of Engineering Physics and Thermophysics, Vol. 50, No. 4, pp. 441-444, 1986.
    35.Zentner, L. K., Dewitt, D. P., White, D. A., and Gaskell, D. R., “Dual-Wavelength Emissivity Compensation Algorithms for Galvannealed Steel,” Temperature, its measurement and control in science and industry, Vol. 6, pp. 861-864, 1992.

    下載圖示 校內:立即公開
    校外:2007-08-08公開
    QR CODE