簡易檢索 / 詳目顯示

研究生: 陳君安
Chen, Jyun-An
論文名稱: 環繞於錐形針尖電極的Landau-Squire交流電動流
Landau-Squire AC Electrokinetic Flows around a Conical Metal Needle
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 124
中文關鍵詞: Landau-Squire噴流交流電熱噴流歐姆交流電滲衝擊流電化學交流電滲噴流
外文關鍵詞: Landau-Squire flow, AC electrothermal Flow (ACET), Ohmic AC electro-osmotic flow (Ohmic ACEO), Faradaic AC electro-osmotic flow (Faradaic ACEO)
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用STM針尖局部電場會被放大的特性,將針尖作為電極的一端以產生強大的電流,我們發現在施加AC電場作用下,流體會於針尖周圍產生類似於經典點力所驅動Landau-Squire噴流現象。據我們所知,這是首次透過AC電場所實現的點力驅動流動,但機理與Landau-Squire噴流的完全不同。藉由調整電壓以及頻率條件來辨別這些不同流動所發生的範圍,分別為交流電熱(AC electrothermal, ACET)噴流、歐姆交流電滲(Ohmic AC electro-osmotic, Ohmic ACEO)衝擊流、電化學交流電滲(Faradaic AC electro-osmotic, Faradaic ACEO)噴流。更重要的是,測量這些不同流動的流速發現皆會與距離成反比之關係,這呈現出與Landau-Squire噴流有相同的表徵。
    在第四章中,我們組裝了一種T字型的電極對裝置,其中包含了由鎢絲透過電蝕刻而形成的錐形針尖,而另一端則是以未經處理的鎢線來做為電極。實驗選用純水並添加粒徑適當的追蹤劑來觀察施加不同電壓及AC頻率下的流動現象。我們發現在高頻(>1 MHz)時針尖周圍會形成ACET噴流現象。而在中高頻(10-100kHz)時將會產生由Ohmic ACEO所驅動的逆時針衝擊流,其流速會快於高頻的ACET噴流,當頻率低於1 kHz時,將出現速度極快的Faradaic ACEO噴流從針尖噴出。這些不同流態的流線會在靠近針尖時會呈現朝針尖吸引,隨後再被針尖排開的驟降現象,並在針尖附近的流速呈現出1/r的依賴性。以上結果皆指出這是一種新的Landau-Squire流動現象。當頻率調至不同流態的範圍邊界時,常會有流態共存的現象,譬如針尖處有ACET噴流,但會受到周圍Ohmic ACEO逆向渦流的干擾進而抑制其流速表現;或者是同時出現Ohmic ACEO及Faradaic ACEO這兩種不同方向的渦流在彼此競爭。
    在第五章中,為了要檢驗導電度對這些不同AC流動的響應,實驗溶液換用食鹽水溶液,其導電度值約為純水的100倍。我們發現這些流動形成的範圍會發生在更高頻的情況,但流速仍然存有1/r的依賴性。而在此條件下的ACET,並未如所預期的,會受到更強的焦耳熱(Joule heating)效應而形成較快的流動,反倒是表現出更慢的流速。
    在第六章中,為了更深入地探討在第四、五章所觀察到的流動現象,我們以物理角度建立了數種理論模型。爾後驗明這AC噴流現象在高頻時確實是歸因於在針尖處由局部焦耳加熱作用所致的ACET主導,造成電力會集中於針尖處,這使得局部噴流速度表現出隨針尖距離成反比的結果。與此同時,發現ACET噴流流速會更趨近於與電壓成三次方的正比關係,而非經典理論中所示的會正比於電壓四次方。此外以經典的電動學理論來闡明在中高頻所產生的逆向Ohmic ACEO衝擊流,確實流速是呈現出正比於電壓平方的關係。至於在低頻所觀察到極快的Faradaic ACEO噴流,是因電化學反應所形成的強大電流引起,進而使流速會正比於V^(3/2)logV。

    In this thesis, we report experimentally that a new class of Landau-Squire flows can be achieved in a purely electrohydrodynamic manner at microscales without pump discharge using nanotubes or nanopores. Utilizing the local diverging electric field near a sharp conducting tip under the actions of ac voltages, we are able to generate a variety of electrohydrodynamic flows that display point-force-like 1/r decay at distance (r) to the tip. These flows are AC electrothermal (ACET) jet, Ohmic AC electro-osmotic (Ohmic ACEO) impinging flow, and Faradaic AC electro-osmotic (Faradaic ACEO) jet, depending on the applied voltage and frequency. In the MHz regime, an ACET jet can emit from the tip that becomes a local hotspot undergoing heated capacitive charging. The resulting electric force thus becomes point-like but varies as V^3 instead of V^4 commonly reported by literature, where V is the driving voltage. At 1–100 kHz, a reversal Ohmic ACEO impinging flow takes place and varies as V^2 in its speed. At even lower frequencies, the impinging flow turns into a jet-like electro-osmotic streaming due to an intensified Faradaic reaction around the tip. The speed of such Faradaic ACEO streaming is found to vary as V^(3/2)logV resulted by the balance between the Faradaic leakage current and tangential conduction, markedly different from (logV)^2 found for planar electrodes.

    摘要...i Abstract...iii 誌謝...viii 目錄...ix 表目錄...xii 圖目錄...xiii 符號說明...xxi 第一章 緒論...1 1.1 研究背景...1 1.2 文獻回顧...1 1.3 研究動機...3 第二章 交流電動基本原理...8 2.1 電雙層(Electrical Double Layer, EDL)...8 2.2 交流電滲流(AC Electro-osmosis, ACEO)...9 2.3 交流電熱流(AC electrothermal flow, ACET)...11 2.4 介電泳(Dielectrophoresis, DEP)...13 第三章 Landau-Squire噴流現象及原理...20 第四章 施加交流電場於針尖電極內的低導電度溶液之流態分析及流速測量...25 4.1 不同追蹤劑對流態呈現之影響...25 4.1.1 工作溶液...25 4.1.2 實驗裝置組裝...26 4.1.3 實驗步驟...27 4.1.4 實驗相關細節...28 4.1.5 流態呈現結果彙整...29 4.1.6 不同粒子流態結果探討...31 4.2 不同電壓、頻率條件下的純水流態呈現...31 4.2.1 工作溶液...31 4.2.2 實驗裝置組裝...32 4.2.3 實驗步驟...32 4.2.4 實驗相關細節...32 4.2.5 實驗結果彙整...33 4.2.6 不同操作條件下之流態結果探討...40 4.3 流態圖及速度量測結果...40 4.3.1 流態圖...41 4.3.2 不同流態之流速測量...41 4.4 結論...42 第五章 施加交流電場於針尖電極中的高導電度溶液之流態分析及流速測量...60 5.1 不同電壓、頻率條件下的鹽水流態呈現...60 5.1.1 工作溶液...60 5.1.2 實驗裝置組裝...61 5.1.3 實驗步驟...61 5.1.3 實驗相關細節...62 5.1.4 實驗結果彙整...63 5.1.5 不同操作條件下之流態結果探討...72 5.2 鹽水溶液之流態圖及速度量測結果...73 5.2.1 流態圖...73 5.2.2 不同流態之流速測量...73 5.3 結論...74 第六章 探討不同流態形成機理及歸一化...79 6.1 針尖電極的局部電場分析...79 6.1.1 局部電場分布...79 6.2 不同流態下的流速尺度分析...83 6.2.1 ACET理論模型...83 6.2.2 Ohmic ACEO理論模型...91 6.2.3 理論模型結論...92 6.3 點力與電壓之依賴性...94 6.3.1 因導線加熱所致之電容充電下的ACET流動...94 6.3.2 微觀下針尖的Faradaic ACEO流動機制...96 6.4 結論...98 第七章 結論與未來工作...115 參考文獻...117 附錄A 鎢絲針尖及PDMS製作...119 A.1 電化學蝕刻原理...119 A.2 裝置及實驗步驟...120 A.2.1 蝕刻裝置...120 A.2.2 實驗步驟...120 A.2.3 實驗細節...121

    1. Crowley, J. M. Role of Joule heating in the electrostatic spraying of liquids. Journal of Applied Physics, 48(1), 145-147. (1977).
    2. Gagnon, Z. R., & Chang, H.-C. Electrothermal ac electro-osmosis. Applied Physics Letters, 94(2), 024101. (2009).
    3. Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., & Castellanos, A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Physical review E, 66, 026305. (2002).
    4. Jackson, J. D. Classical Electrodynamics. U.S, Wiley. (1998).
    5. Landau, L. D., & Lifshitz, E. M. Fluid Mechanics: Volume 6 of Course of Theoretical Physics, 2nd. U.S, Butterworth Heinemann. (1987).
    6. Laohakunakorn, N., Thacker, V. V., Muthukumar, M., & Keyser, U. F. Electroosmotic flow reversal outside glass nanopores. Nano letters, 15(1), 695-702. (2015).
    7. Lastochkin, D., Zhou, R., Wang, P., Ben, Y., & Chang, H.-C. Electrokinetic micropump and micromixer design based on ac faradaic polarization. Journal of Applied Physics, 96, 1730-1733. (2004).
    8. Lian, M., Islam, N., & Wu, J. AC electrothermal manipulation of conductive fluids and particles for lab-chip applications. Iet Nanobiotechnology, 1, 36-43. (2007).
    9. Morgan, H. & Green, N. G. AC Electrokinetic: Colloids and Nanoparticles. Baldock, UK: Research Studies. (2003).
    10. Olesen, L. H., Bruus, H., & Ajdari, A. AC electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance. Physical Review E, 73(5), 056313. (2006).
    11. Pan, Z., Wang, C., Li, M., & Chang, H.-C. Universal scaling of robust thermal hot spot and ionic current enhancement by focused Ohmic heating in a conic nanopore. Physical review letters, 117(13), 134301. (2016).
    12. Perch-Nielsen, I. R., Green, N. G., & Wolff, A. Numerical simulation of travelling wave induced electrothermal fluid flow. Journal of Physics D: Applied Physics, 37(16), 2323. (2004).
    13. Pozrikidis, C. Introduction to Theoretical and Computational Fluid Dynamics. Oxford university press. (1996).
    14. Ramos, A., Morgan, H., Green, N. G., & Castellanos, A. AC electrokinetics: a review of forces in microelectrode structures. Journal of Physics D: Applied Physics, 31(18), 2338. (1998).
    15. Wu, J., Lian, M., & Yang, K. Micropumping of biofluids by alternating current electrothermal effects. Applied physics letters, 90(23), 234103. (2007).
    16. Yang, K., & Wu, J. Investigation of microflow reversal by ac electrokinetics in orthogonal electrodes for micropump design. Biomicrofluidics, 2(2), 024101. (2008).
    17. 劉哲呈,導電針尖因交流電場所致之粒子捕捉及流動現象。國立成功大學化工所碩士論文,2019。

    下載圖示 校內:2023-08-20公開
    校外:2023-08-20公開
    QR CODE