研究生: |
王怡菲 Wang, Yi-Fei |
---|---|
論文名稱: |
以Kano模型探討大五人格對網絡音樂社交APP功能需求的偏好影響 Exploring the influence of Big Five personality preferences on the functional requirements of online music social apps with the Kano model |
指導教授: |
何俊亨
Ho, Chun-Heng |
學位類別: |
碩士 Master |
系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 187 |
中文關鍵詞: | 網絡音樂社交 、「大五」人格 、Kano模型 、音樂社交APP |
外文關鍵詞: | online music socialization, "Big Five" Personality, Kano model, music socialization app |
相關次數: | 點閱:101 下載:45 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著移動互聯網時代的到來,移動媒體變的更加的便攜、迅速和互動。社交網絡對人們日常生活的介入,使人們的社交方式發生了巨大的改變,作為在線音樂和社交新媒體碰撞的產物,音樂社交迅速發展,在短短的十幾年光陰中,我們可以發現音樂早已不只是一種用來滿足聽覺享受的工具,更是一種高效和便捷的社交工具。在音樂社交中,不同人格的群體會產生全然不同的偏好態度與影響,人格信息代表了對一個人特徵的高度概括,也是區分人類的科學和量化標准。人格不僅與人們在現實世界中的行為密切相關,而且與虛擬的網路社交行為也表現出高度的相關性。因此,本研究的討論基於「大五」人格模型理論,包含五類各具特色、互不相關的性格特徵:神經質、開放性、外向性、嚴謹性和宜人性。
本文採用「大五」人格量表和Kano模型分析法以131名年輕人為樣本進行調查,通過Kano模型的正反面問卷的調查形式對每一個需求發放問卷,分析問卷結果後確定各需求點的屬性歸類,再通過計算Better-Worse係數,確定各期望型需求的優先順序。其目的是探討不同人格對網絡音樂社交模式的偏好影響,以音樂社交APP為例,從而分析音樂社交行為的個體差異,並且通過與「大五」人格理論的分析調查及討論相結合,對不同人格、不同性別、不同地區的族群對待音樂社交的情感態度、對音樂社交APP的使用偏好;音樂社交對不同人格族群的優劣勢;通過何種方法來提高音樂社交對不同人格、不同性別、不同地區的族群的體驗感受等問題進行分析討論。
With the arrival of the mobile Internet era, mobile media has become more portable, rapid and interactive. The involvement of social networks in people's daily life has led to a huge change in the way people socialize. As a product of the collision of online music and new social media, music socialization has developed rapidly, and in the short span of more than a decade, we can find that music has long been more than just a tool to satisfy aural enjoyment, but also a highly efficient and convenient social tool. In music socialization, different personality groups will produce completely different preference attitudes and influences. Personality information represents a high degree of generalization of a person's characteristics, and is also a scientific and quantitative standard for distinguishing human beings. Personality is not only closely related to people's behavior in the real world, but also shows a high correlation with virtual online social behavior. Therefore, the discussion in this study is based on the theory of the Big Five personality model, which consists of five distinctive and unrelated personality traits: Neuroticism, Openness, Extraversion, Strictness, and Agreeableness.
In this paper, the "Big Five" personality scale and Kano model analysis were used to conduct a survey with a sample of 131 young people. A questionnaire was sent to each demand through the Kano model in the form of positive and negative questionnaires, and the results of the questionnaires were analyzed to determine the attributes of each demand, and then the Better-Worse coefficients were computed to determine the priority of each desired demand. The purpose of this study is to explore the influence of different personalities' preferences on online music socialization modes, and to analyze the individual differences in music socialization behaviors by taking music socialization apps as an example. By combining this study with the analysis and discussion of the "Big Five" personality theory, we can analyze the emotional attitudes of different personalities, genders, and regions towards music socialization, their preference for music socialization apps, and the strengths and weaknesses of music socialization for different personalities, as well as the advantages and disadvantages of different personalities through the analysis of the Big Five. The advantages and disadvantages of music socialization for different personality groups, and the ways to improve the experience of music socialization for different personality groups, different genders, and different regions are analyzed and discussed.
Amichai-Hamburger, Y. and G. Vinitzky (2010). "Social network use and personality." Computers in human behavior 26(6): 1289-1295.
Amichai-Hamburger, Y. and G. Vinitzky (2010). Social network use and personality Computers in Human Behavior, article.
Barnes, J. A. (1954). "Class and committees in a Norwegian island parish." Human relations 7(1): 39-58.
Berger, J. and K. L. Milkman (2012). "What makes online content viral?" Journal of marketing research 49(2): 192-205.
Čaić, M., et al. (2019). "Value of social robots in services: Social cognition perspective." Journal of Services Marketing 33(4): 463-478.
Cattell, R. B. and J. C. Anderson (1953). "The measurement of personality and behavior disorders by the IPAT Music Preference Test." Journal of Applied Psychology 37(6): 446.
Chamorro-Premuzic, T., et al. (2009). "The big five personality traits and uses of music: A replication in Malaysia using structural equation modeling." Journal of Individual Differences 30(1): 20-27.
Chamorro‐Premuzic, T. and A. Furnham (2007). "Personality and music: Can traits explain how people use music in everyday life?" British journal of psychology 98(2): 175-185.
Costa, P. T. and R. R. McCrae (1992). "Normal personality assessment in clinical practice: The NEO Personality Inventory." Psychological assessment 4(1): 5.
Deutsch, D. (2013). Psychology of music, Elsevier.
Furnham, A. (1996). "The big five versus the big four: the relationship between the Myers-Briggs Type Indicator (MBTI) and NEO-PI five factor model of personality." Personality and individual differences 21(2): 303-307.
Garrido, S. and E. Schubert (2011). "Individual differences in the enjoyment of negative emotion in music: A literature review and experiment." Music Perception 28(3): 279-296.
Geethanjali, B., et al. (2018). "Music Induced Emotion and Music Processing in the Brain–A Review." Journal of Clinical & Diagnostic Research 12(1).
Goldberg, L. R. (1992). "The development of markers for the Big-Five factor structure." Psychological assessment 4(1): 26.
Greenberg, D. M., et al. (2015). "Musical preferences are linked to cognitive styles." PloS one 10(7): e0131151.
Headey, B., et al. (1991). "Top-down versus bottom-up theories of subjective well-being." Social indicators research 24: 81-100.
Hughes, D. J., et al. (2012). "A tale of two sites: Twitter vs. Facebook and the personality predictors of social media usage." Computers in human behavior 28(2): 561-569.
Kano, N. (1984). "Attractive quality and must-be quality." Journal of the Japanese society for quality control 31(4): 147-156.
Karsvall, A. (2002). Personality preferences in graphical interface design. Proceedings of the second Nordic conference on Human-computer interaction.
Litle, P. and M. Zuckerman (1986). "Sensation seeking and music preferences." Personality and individual differences 7(4): 575-578.
Litman, J. (2005). "Curiosity and the pleasures of learning: Wanting and liking new information." Cognition & emotion 19(6): 793-814.
Lonsdale, A. J. and A. C. North (2009). "Musical taste and ingroup favouritism." Group Processes & Intergroup Relations 12(3): 319-327.
McCrae, R. R. and P. T. Costa Jr (1997). "Personality trait structure as a human universal." American psychologist 52(5): 509.
Melchers, R. E. and A. T. Beck (2018). Structural reliability analysis and prediction, John wiley & sons.
Nass, C. and Y. Moon (2000). "Machines and mindlessness: Social responses to computers." Journal of social issues 56(1): 81-103.
North, A. and D. Hargreaves (2008). The social and applied psychology of music, OUP Oxford.
Rawlings, D., et al. (2000). "A factor analytic study of the Hypomanic Personality Scale in British, Spanish and Australian samples." Personality and individual differences 28(1): 73-84.
Rentfrow, P. J., et al. (2011). "The structure of musical preferences: a five-factor model." Journal of personality and social psychology 100(6): 1139.
Rentfrow, P. J. and S. D. Gosling (2003). "The do re mi's of everyday life: the structure and personality correlates of music preferences." Journal of personality and social psychology 84(6): 1236.
Rentfrow, P. J. and S. D. Gosling (2007). "The content and validity of music-genre stereotypes among college students." Psychology of Music 35(2): 306-326.
Roberts, B. W., et al. (2005). "The structure of conscientiousness: An empirical investigation based on seven major personality questionnaires." Personnel psychology 58(1): 103-139.
Rodebaugh, T. L., et al. (2004). "More information from fewer questions: the factor structure and item properties of the original and brief fear of negative evaluation scale." Psychological assessment 16(2): 169.
Ross, C., et al. (2009). "Personality and motivations associated with Facebook use." Computers in human behavior 25(2): 578-586.
Rothmann, S. and E. P. Coetzer (2003). "The big five personality dimensions and job performance." SA Journal of industrial psychology 29(1): 68-74.
Schäfer, T., et al. (2013). "The psychological functions of music listening." Frontiers in psychology 4: 511.
Selfhout, M., et al. (2010). "Emerging late adolescent friendship networks and Big Five personality traits: A social network approach." Journal of personality 78(2): 509-538.
Shneiderman, B. (2000). "Creating creativity: user interfaces for supporting innovation." ACM Transactions on Computer-Human Interaction (TOCHI) 7(1): 114-138.
Simmel, G. (1950). The sociology of georg simmel, Simon and Schuster.
蔡振家 (2013). "音樂情緒跟音樂認知的關係: 美學與心理學的對話." 星海音樂學院學報(131): 120-127.
儲雯倩 and 叢挺 (2020). "音樂社交 APP 互動儀式鏈研究——以網易雲音樂為例." (未來傳播): 27(23),67-73.
樊三彩 and 俞锫 (2016). "互联网音乐社交化发展模式简析." 音乐传播(3): 70-72.
胡婷 (2020). 新媒体音乐社交平台中的互动研究, 黑龙江大学.
姜卉, et al. (2020). "应急救援团队中大五人格对 TSA 的影响: 一个双调节模型." 中国安全科学学报 30(10): 156.
刘伟明 and 彭丽萍 (2019). "网络音乐平台中的 “音乐社交” 实践与影响浅析." 声屏世界 7.
馬斯洛 (1943). 人類動機的理論, 心理學評論.
孙文博 (2020). "网络音乐平台的 “音乐社交” 理念再探——基于 “结构洞” 理论的视角." 艺术传播研究.
田代亮 (2010). 高职大学生人际关系, 人格特质, 应对方式及其关系研究, 曲阜师范大学.
王婧伊 (2022). "網易雲音樂APP的線上音樂社交研究."
王路 (2017). "从网易云音乐看 “音乐社交” 生态的建设." 传媒(3): 70-72.
王孟成, et al. (2011). "中国大五人格问卷的初步编制 Ⅲ: 简式版的制定及信效度检验." 中国临床心理学杂志 4.
謝楊琳 (2022). "移動音樂社交平台的互動儀式鏈研究——以網易雲音樂為例." (新媒體研究).
新華辭書社 (1953). "新華字典."
徐夢芯 (2019). "基於用戶為中心的音樂社交研究——以網易雲音樂為例." 新聞研究導刊.
杨燕 (2005). 社交心理学, 天津: 天津大学出版社.
张磊, et al. (2014). 社交网络用户的人格分析与预测.