| 研究生: |
王思惠 Wang, Sz-Huei |
|---|---|
| 論文名稱: |
應用分子模版從不同大豆溶液中選擇性萃取異黃酮素 The application of molecularly imprinted polymers to the selective extraction of isoflavones from various soybean solutions |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 147 |
| 中文關鍵詞: | 分子模版 、分離 、大豆 、異黃酮素 |
| 外文關鍵詞: | soybean, isoflavones, separation, molecularly imprinted polymer |
| 相關次數: | 點閱:149 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於利用分子模版技術,代替傳統的分離純化程序,自大豆中提煉大豆異黃酮素(Soy isoflavones)。一般而言,異黃酮素於每克大豆內的總含量為1.2~3.4毫克,且其含量會因大豆的種類、生長年數以及生長的區域的不同而變化。由於大豆異黃酮素具有抗氧化、預防骨質疏鬆、降低心血管疾病的罹患率及抗癌等作用,使得大豆異黃酮素為近幾年許多研究人員積極研究的物質。
若能利用低成本、提煉步驟簡易的分子模版技術成功地將大豆內之異黃酮素提煉出來,則將能解決傳統分離純化程序所遭遇到的耗能、又費時的問題。
本研究以金雀異黃酮為目標分子,進行分子模版的製備。利用批式再吸附測試,以及微熱卡計的恆溫滴定方法,對分子模版的組成進行最適化設計。比較批式再吸附以及恆溫滴定的結果,乙二醇二甲基丙烯酸酯(EGDMA)以及四甲基吡啶(4VP)分別是於被測試的單體中,最適交聯劑與功能性單體。隨功能性單體對目標分子的莫耳比(FM/T)由2增加至8,微熱卡計所記錄的功能性單體與目標分子溶液間作用熱由30 mJ減少成14 mJ,但隨更多的功能性單體滴定入系統中,微熱卡計所顯示的訊號為一定值,不再改變。於本研究中,以乙腈為溶劑,功能性單體對目標分子的莫耳比為8的組成比例,使用沈澱聚合方法製備分子模版,所得模版之α值約為2。
利用Scatchard plot探討模版吸附的動力機制,可知道分子模版對金雀異黃酮的吸附,是由特異性吸附行為,以及非特異性吸附行為共同貢獻,其中兩吸附行為的親和性的差異相差了約17倍。而分子模版不管於單一成份系統中或於多成份複雜系統中,皆可藉由分子的大小、形狀與化學結構的不同,對分子進行辨識,然而當模版於多成份之複雜系統之下,對於目標分子的辨識效果會因其他分子的競爭而降低。
實際應用模版於大豆萃取液對異黃酮素分離純化的結果顯示,於模版再脫附的溶液組成中,異黃酮素的組成比例有所提高,由原本於大豆萃取液中佔42%提高至65%;而其他非異黃酮素類的物質於溶液內的組成相對減少,代表分子模版於真實樣品溶液內,對異黃酮素分子具有吸附能力以及選擇性。但由於模版對異黃酮素的選擇性以及吸附能力未達到理想,因此未能得到預期的突破曲線,於模版設計方面必需再以加強,才能真正簡化分離純化之程序。
The purpose of this research was to replace the traditional separation process by molecular imprinting technique to separate and purify soy isoflavones from soybean. In general, soybeans contain 1.2~4.2 mg of total isoflavones/g of sample, and the content will vary with the variety, crop year and growth location of the soybean samples.
Due to the antioxidant, anti-osteoporotic, anti-atherogenic, and anti-carcinogenic activities, isoflavones were the compounds that researchers are very interested in recent years.
The problems of power-consuming and tedious procedure of traditional separation process could be overcome with cost-down and simplified process by using molecularly imprinted polymer.
In this study, genistein was chosen as template to prepare the molecularly imprinted polymer. The batch re-binding study and isothermal titration method were introduced to investigate the optimized formulation of genistein-imprinted polymer. Comparing the results of batch re-binding study and isothermal titration, EGDMA and 4VP were the optimized cross-linker and functional monomer among the monomers tested in this study. The interaction between 4VP and genistein solution recorded by micro-calorimeter decrease from 30 mJ to 14 mJ with increasing the molar ratio of functional monomer to template (FM/T) from 2 to 8, and the interaction became a constant with further injecting. The imprinting factor of genistein-imprinted polymer preparing with acetonitrile as solvent, FM/T ratio 8 is about 2. The result of scatchard plot shows that both specific binding and non-specific binding sites contribute the adsorption of genistein on the polymer. And the affinity of specific binding sites are 17 times then the non-specific ones. The genistein-imprinted polymer could recognize the target molecules by the size, shape and the structure of the compounds in both single-component and multi-component systems. However, the selectivity of the imprinted polymer for genistein decreased in multi-component system due to competition of other structural related compounds.
The composition of isoflavones in the after-desorbing solution was higher than the composition in the soybean extract while the composition of the other components decreases. This revealed that the imprinted polymer exhibit selectivity and affinity for isoflavones. However, in this study, the break-through curve couldn’t be obtained due to the performance of the imprinted polymer wasn’t better enough. The genistein-imprinted polymer could be applied to simplify the separation process by preparing imprinted polymer with the optimized formulation.
[1] 曾富生,吳詩都,行政院農業委員會農糧署,
“http://www.afa.gov.tw/public_index.asp?CatID=112”, 2007/6/7.
[2] 大豆深加工21世紀的朝陽產業,
“http://www.chinesefreewebs.com/drtyh123/21.htm”, 2007/6/7
[3] M.J. Messina, O. Kucuk, J.W. Lampe, Journal of AOAC
International 89(4), 1121-1134 (2006).
[4] J. An, C. Tzagarakis-Foster, T.C. Scharschmidt, N. Lomri, D.C.
Leitman, Journal of Biological Chemistry 276 (2001) 7808.
[5] P.A. Murphy, T. Song, G. Buseman, K. Barua, G.R. Beecher, D.
Trainer, J. Holden, Journal of Agricultural and Food Chemistry 47 (1999) 2697.
[6] M.A. Rostagno, M. Palma, C.G. Barroso, Analytica Chimica Acta 522 (2004) 169.
[7] Sciencedaily, “http://www.sciencedaily.com/releases/2006/02/060206230336.htm ”, 2007/01/25.
[8] A. Cassidy, Journal of AOAC International 89 (2006) 1182.
[9] G.M. Cooke, Journal of AOAC International 89 (2006) 1215.
[10] Leitman, Journal of Biological Chemistry 276 (2001) 17808.
[11] J.M.C. Gutteridg, B. Halliwell, Trends in Biochemical Sciences 15 (1990) 129.
[12] 陳世爵, 健康世界八月號 (1997) 111.
[13] S. Sato, Carbohydrate Research 341 (2006) 1091.
[14] G. Yen, C. Kao, ACS Symposium Series 816 (2002) 73.
[15] S. Lee, W. Yan, Field Crops Research 81 (2003) 181.
[16] T. Nguyenle, E. Wang, A.P. Cheung, Journal of Pharmaceutical
and Biomedical Analysis 14 (1995) 221.
[17] L.S. Hutabarat, H. Greenfield, M. Mulholland, Journal of Chromatography A 886 (2000) 55.
[18] P.A. Murphy, K. Barua, C.C. Hauck, Journal of Chromatography B 777 (2002) 129.
[19] I.U. Grün, K. Adhikari, C. Li, Y. Li, B. Lin, J. Zhang, L.N. Fernando, Journal of Agricultural and Food Chemistry 49 (2001) 2839.
[20] L. Liggins, L.J.C. Bluck, S. Runswick, C. Atkinson, A. Coward, S. Bingham, Journal of Nutritional Biochemistry 11 (2000) 326.
[21] A. Chandra, M.G. Nair, Phytochemical Analysis 4 (1996) 259.
[22] M.A. Rostagno, J.M.A. Araujo, D. Sandi, Food Chemistry 78 (2002) 111.
[23] M.A. Rostagno, M. Palma, C.G. Barroso, Journal of
Chromatography A 1012 (2003) 119.
[24] Q. Du, Z. Li, Y. Ito, Journal of Chromatography A 923 (2001) 271.
[25] X. Ma, P. Tu, Journal of Chromatography A 992 (2003) 193.
[26] F. Yang, Y. Ma, Y. Ito, Journal of Chromatography A 928 (2001) 163.
[27] H. Benny Harjo, W. Christianto, Industrial & Engineering Chemistry Research 46 (2007) 181.
[28] P.A. Murphy, T. Song, G. Buseman, K. Barua, G.R. Beecher, D. Trainer, J. Holden, Journal of Agricultural and Food Chemistry 45 (1997) 4635.
[29] Y. Nomura, Biosensors & Bioelectronics 13 (1998) 1047.
[30] I. Holwill, A. Gill, J. Harrison, M. Hoare, Process Control and Quality 8 (1996) 133.
[31] J. W. Chung, S. D. Kim, R. Bernhardt, J. C. Pyun, Sensors and Actuators 111 ( 2005) 416.
[32] Edited by Charles E. Ophardt, Virtual Chembook, Elnhurst Collect, 2003.
[33] Breinl, F., and Haurowitz F. Z., 1930, Physiol. Chem., 192, 45.
[34] S. Mudd, Journal of Immunology 23 (1932) 423.
[35] L. Pauling, Journal of the American chemical society 62 (1940) 2643.
[36] F.H. Deickey, Proceeding of the National Academy Science of the United State of America 25 (1949) 227.
[37] G. Wulff, A. Sarhan, Angewandte Chemie 84 (1972) 364.
[38] R. Arshady, K. Mosbach, Makromolekulare Chemie 182 (1981) 687.
[39] O. Norrlow, M. Glad, K. Mosbach, Journal of Chromatography 299 (1984) 29.
[40] B. Sellergren, B. Ekberg, K. Mosbach, Journal of Chromatography 347 (1985) 1.
[41] R.J. Ansell, “http://www.chem.leeds.ac.uk/People/RJA/molimp.html”, 2007/6/7
[42] S.A. Piletsky, H.S. Andersson, I.A. Nicholls, Macromolecules 32 (1999) 633.
[43] S.A. Piletsky, H.S. Andersson, I.A. Nicholls, Polymer Journal 37 (2005) 793.
[44] C. Yu, O. Ramstroem, K. Mosbach, Analytical Letters 30 (1997) 2123.
[45] M.J. Whitcombe, M.E. Rodriguez, P. Villar, E.N. Vulfson, Journal of the American Chemical Society 117 (1995) 7105.
[46] G. Wulff, A. Angewandte Chemie 84 (1972) 364.
[47] K. Karim, F. Breton, R. Rouillon, E.V. Piletska, A. Guerreiro, I. Chianella, S.A. Piletsky, Advanced Drug Delivery Reviews 57 (2005) 1795.
[48] M.J. Whitcombe, L. Martin, E.N. Vulfson, Chromatographia 47 (1998) 457.
[49] W. Dong, M. Yan, M. Zhang, Z. Liu, Y. Li, Analytica Chimica Acta 542 (2005) 186.
[50] Y. Lu, C. Li, H. Zhang, X. Liu, Analytica Chimica Acta (2003).
[51] S. A. Ipletsky, K. Karim, E.V. Ipletska, C.J. Day, K.W. Freebairn, C. Legge, A. P. F. Turnera, Analyst 126 (2001) 1826.
[52] E. Ipletska, S. Ipletsky, K. Karim, E. Terpetschnig, A. Turner, Analytica Chimica Acta 504 (2004) 179.
[53] L. Wu, Y. Li, Analytica Chimica Acta 482 (2003) 175.
[54] W. Donga, M. Yan, M. Zhang, Zh. Liu, Y. Li, Analytica Chimica Acta 542 (2005) 186.
[55] 吳佳怡, ’分子模印高分子之製備’, 碩士論文, 1993.
[56] N. Perez Moral, A.G. Mayes, Analytica Chimica Acta 504 (2004) 15.
[57] D. A. Spivak, Advanced Drug Delivery Reviews 57 (2005)
1779.
[58] 林欣怡, ‘用微接觸技術製備肌紅蛋白質的人工抗體模版’, 碩士論文, 2006
[59] K. Mosbach, Trends in Biochemical Sciences 19 (1994) 9.
[60] K. Haupt, K. Mosbach, Chemical Reviews 100 (2000) 2495.
[61] S. Vidyasankar, F.H. Arnold, Current Opinion in Biotechnology 6 (1995) 218.
[62] L. Schweitz, L.I. Andersson, S. Nilsson, Journal of
Chromatography A 817 (1998) 5.
[63] J.S. Fritz, P.J. Dumont, L.W. Schmidt, Journal of
Chromatography A 691 (1995) 133.
[64] I. Chianella, S.A. Piletsky, I.E. Tothill, B. Chen, A.P.F. Turner, Biosensors and Bioelectronics 18 (2003) 119.
[65] O. Ramstrom, K. Mosbach, Current Opinion in Chemical Biology 3 (1999) 759.
[66] P.H.H. Hermkens, H.C.J. Ottenheijm, D. Rees, Tetrahedron 52 (1996) 4527.
[67] C. Alexander, L. Davidson, W. Hayes, Tetrahedron 59 (2003) 2025.
[68] O. Bruggemann, Analytica Chimica Acta, 435 (2001) 197.
[69] D. Kriz, O. Ramstroem, A. Svensson, K. Mosbach, Analytical Chemistry 67 (1995) 2142.
[70] F.L. Dickert, O. Hayden, Trends in Analytical Chemistry 18 (1999) 192.
[71] M. C. Blanco-Lopez, M.J. Lobo-Castanon, A.J. Miranda-Ordieres, P. Tunon-Blanco, Biosensors and Bioelectronics 18 (2003) 353.
[72] E. Freire, O.L. Mayorga, M. Straume, Analytical Chemistry, 62 (1990) 950A.
[73] R.Y. Lin, W.Y. Chen, Journal of Chinese Colloid and Interface Society, 18 (1995) 119.
[74] P. Backman, M. Bastos, L.E. Briggner, S. Hagg, D. Hallen, P. Lonnro, S.O. Nilsson, G. Olofsson, A. Schon, J. Suukuusk, C. Teixeira, I. Wadso, Pure and Applied Chemistry. Chimie Pure et Appliquee 66 (1994) 375.
[75] T. A. Sweden, Thermometric 2250-series.
[76] A. Allaoua, I. B. Joyce, B. Denis, Food Research International 38 (2005) 1199.