| 研究生: |
劉文慶 Liu, Wen-Ching |
|---|---|
| 論文名稱: |
應用微觀模式評估奈米尺度等效性質的一些課題 |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 微觀力學 、奈米碳管 |
| 外文關鍵詞: | micro-mechanics, nanotube |
| 相關次數: | 點閱:57 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
探討奈米碳管及其複合材料的一些基本課題。首先介紹各種奈米碳管的結構型式,包含單臂、鋸齒形和手性奈米碳管,以及從石墨片到碳管的映射關係,並且以圓柱座標建立在管壁上碳原子的位置,我們利用能量的方法,推導出單層奈米碳管的一些機械性質,包括軸向楊氏模數、浦松比和徑向、環向楊氏模數以及平面應變體積模數,結果顯示奈米碳管的機械性質和本身的幾何型式以及管徑大小相關,在另一方面,應用傳統微觀微量模式模擬奈米碳管複合材料的熱傳導行為,並且進一步探討碳管側邊方向的界面問題對等效熱傳導係數的影響,以及利用兩種極端的情況模擬關於奈米碳管尖端的傳導行為,發現實驗的數據會介於兩種預測值之間。
none
Chang, T., and Gao, H., 2003, Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model, J. Mech. Phys. Solids 51, pp. 1059-1074.
Chen, T., 2001, Thermal conduction of a circular inclusion with variable interface parameter, Int. J. Solids Struct. 38, pp. 3081-3097.
Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E., and Grulke, E. A., 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett. 79, pp. 2252-2254.
Dresselhaus, M. S., Dresselhaus, G., and Saito, R., 1995, Physics of carbon nanotubes, Carbon 33, pp. 883-891.
Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C., 1996, Science of fullerenes and carbon nanotubes, Academic Press, San Diego.
Gere, J. M., and Timoshenko, S. P., 1997, Mechanics of materials(4th ed.), PWS Publishing Company, Boston.
Grassberger, P., and Yang, L., 2002, Heat conductivity in low dimensions: From Fermi-Pasta-Ulam chains to single-walled nanotubes, Preprint cond-mat/0204247; http://arXiv.org.
Hatta, H., and Taya, M., 1985, Effective thermal conductivity of a misoriented short fiber composite, J. Appl. Phys. 58, pp. 2478-2486.
Hone, J., Whitney, M., Piskoti, C., and Zettl, A., 1999, Thermal conductivity of single-walled carbon nanotubes, Phys. Rev. B 59, pp. 2514-2516.
Iijima, S., 1991, Helical microtubules of graphitic carbon, Nature 354, pp. 56-58.
Kim, P., Shi, L., Majumdar, A., and McEuen, P. L., 2001, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, pp. 21550 (1-4).
Lepri, S., Livi, R., and Politi, A., 1997, Heat conduction in chains of nonlinear oscillators, Phys. Rev. Lett. 78, pp. 1896-1899.
Lepri, S., Livi, R., and Politi, A., 2001, On the universality of anomalous one-dimensional heat conductivity, Phys. Rep. (in the press); Preprint cond-mat/0112193, http://arXiv.org.
Li, C., and Chou, T. W., 2003, A Structural mechanics approach for the analysis of the carbon nanotubes, Int. J. Solids Struct. 40, pp. 2487-2499.
Li, C., and Chou, T. W., 2004, Elastic properties of single-walled carbon nanotubes in transverse directions, Phys. Rev. B 69, pp. 073401 (1-3).
Liu, B., Jiang, H., Johnson, H. T., and Huang, Y., 2004, The influence of mechanical deformation on the electrical properties of single wall carbon nanotubes, J. Mech. Phys. Solids 52, pp. 1-26.
Livi, R., and Lepri, S., 2003, Heat in one dimension, Nature 421, pp. 327.
Nan, C. W., Shi, Z., and Lin, Y., 2003, A simple model for thermal conductivity of carbon nanotube-based composites, Chem. Phys. Lett. 375, pp. 666-669.
Odegard, G. M., Gates, T. S., Nicholson, L. M., and Wise, K. E., 2002, Equivalent-continuum modeling with application to carbon nanotubes, NASA/TM-2002-211454.
Poncharal, P., Wang, Z. L., Ugarte, D., and de Heer, W. A., 1999, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283, pp. 1513-1516.
Qian, D., Dickey, E. C., Andrews, R., and Rantell, T., 2000, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett. 76, pp. 2868-2870.
Qian, D., Wagner, G. J., Liu, W. K., Yu, M.F., and Ruoff, R.S., 2002, Mechanics of carbon nanotubes, Appl. Mech. Rev. 55, pp. 495-533.
Ru, C. Q., 2001, Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium, J. Mech. Phys. Solids 49, pp. 1265-1279.
Shen, L., and Li, J., 2004, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B 69, pp. 045414 (1-10).
Thostenson, E. T., Ren, Z., and Chou, T.-W., 2001, Advances in the science and technology of carbon nanotubes and their composites: A review, Comp. Sci. Tech. 61, pp. 1899-1912.
Natsuki, T., Tantrakarn, K., and Endo, M., 2004, Prediction of elastic properties for single-walled carbon nanotubes, Carbon 42, pp. 39-45.
Vodenitcharova, T., and Zhang, L. C., 2003, Effective wall thickness of a single-walled carbon nanotube, Phys. Rev. B 68, pp. 165401 (1-4).
White, C. T., Robertson, D. H., and Minitmire, J. W., 1993, Helical and rotation symmetries of nanoscale graphitic tubules, Phys. Rev. B 47, pp. 5484-5488.
Xue, Q. Z., 2002, Model for effective thermal conductivity of nanofluids, Phys. Lett. A 307, pp. 313-317.
Zhang, P., Huang, Y., Geubelle, P. H., Klein, P. A., and Hwang, K. C., 2002, The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials, Int. J. Solids Struct. 39, pp. 3893-3906.
Zheng, Q., Liu, J. Z., and Jiang, Q., 2002, Excess van der waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation, Phys. Rev. B 65, pp. 245409 (1-6).
陳高烜, 2003 六月, 複合材料的等效磁致伸縮係數, 成功大學土木工程研究所碩士論文。