簡易檢索 / 詳目顯示

研究生: 余健忠
Yu, Jian-Zhong
論文名稱: 表面力對複合材料等效係數的影響
Effective modulus of composite materials with interface stress
指導教授: 陳東陽
Chen, Tung-yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 138
中文關鍵詞: 界面效應圓柱表面力
外文關鍵詞: surface/interface stress
相關次數: 點閱:105下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文的目的主要在不同的變形方式下於利用Eshelby 的

    公式和平均值定理來作等效模數的推導。首先簡述界面

    效應的起源和運用的範圍,接著利用變分的方法來推導

    複合材料在界面效應下的位移平衡方程式、連結界面之

    間的力學行為以及自然的邊界條件,其次利用Eshelby

    的公式和平均值定理來推導球形與圓柱形複合材料之間

    的表面力與表面能等界面效應對於等效體積模數、等效

    剪力模數和等效熱膨脹係數的影響。並且當忽略界面效

    應時,證明推導的等效模數會與完美界面的答案吻合。

    最後進行數值的模擬實際計算界面效應對於等效模數的

    影響,發現材料的性質會受到不同的界面以及內含物半

    徑大小而改變。

    The main purpose of this thesis is to explore

    the effective modulus of composite materials

    incorporating the effects of surface/interface

    stress. We first outline the physical

    interpretation of the interface effect and the

    potential aspects of the application. Secondly,

    we use the method of calculus of variations to

    obtain the equilibrium equation of the

    admissible displacements, the mechanics behavior

    at the interface and natural transition

    conditions. Thirdly, Eshelby formula together

    with the average theorem are employed to

    investigate how the surface stress and surface

    energy of the spherical and cylindrical

    composite materials influence effective bulk

    modulus, effective shear modulus and thermal

    conductivity. In the absence of the interface

    effect, we show that the effective modulus

    reduce exactly to the corresponding solution

    with perfect bounding interfaces. Finally,

    numerical simulation are illustrated to

    demonstrate the relation between the interface

    effect and effective modulus. We find that the

    interface effect and the radii of the inclusion

    dramatically influence the over behavior as well

    as the local fields.

    摘要.........................................................I 誌謝........................................................II 目錄.......................................................III 圖目錄.......................................................V 符號表......................................................VI 第一章 緒論..................................................1 第二章 球形內含物的界面效應..................................5 2.1 基本方程式.............................................5 2.2 球對稱變形.............................................7 2.2.1 等效體積模數的推導................................15 2.2.2 球等效熱膨脹係數的推導............................18 2.3 球的剪力變形..........................................23 2.3.1 等效剪力模數的推導................................36 第三章 圓柱形內含物的界面效應...............................43 3.1 圓柱的基本方程式......................................43 3.2 圓柱對稱變形..........................................44 3.2.1 等效模數的推導--- 、 、 ..........................51 3.2.2 圓柱等效熱膨脹係數的推導..........................55 3.3 圓柱的剪力變形........................................59 3.3.1 等效模數的推導--- ................................64 3.3.2 等效模數的推導--- ................................75 第四章 結果與分析...........................................79 4.1 材料性質..............................................79 4.2 殘留的表面章量........................................79 4.3 界面的Lamé constants..................................84 第五章 結論與研究方向......................................100 參考文獻...................................................101 附錄A......................................................105 附錄B......................................................109 附錄C......................................................118 自述.......................................................138

    Boresi P. and Lymn, P. P., Elasticity in Engineering Mechanics, Prentice-Hall, Inc., New Jersey, 1974.

    Barber, J. R., Elasticity, Solid Mechanics and Its Applications, Kluwer Academic Publishers, 1992.

    Benveniste, Y. and He, Q.-C., Exactly solvable spherically anisotropic thermoelastic microstructures, J. Mech. Phys. Solids, 52, pp. 2661 – 2682, 2004.

    Benveniste, Y., Dvorak, G. J. and Chen, T., Stress fields in composites with coated inclusions, Mech. Mater., 7, pp. 305 – 317, 1989.

    Cammarata, R. C., Sieradzki, K. and Spaepen, F., Simple model for interface stresses with application to misfit dislocation generation in epitaxial thin films, J. Appl. Phys., 87, pp. 1227 – 1234, 2000.

    Chen, T., Dvorak, G. J. and Benveniste, Y., Stress fields in composites reinforced by coated cylindrically orthotropic fibers, Mech. Mater., 9, pp. 17 – 32, 1990.

    Chen, T., Dvorak, G. J. and Benveniste Y., Mori-Tanaka Estimates of the Overall Elastic Moduli of Certain Composite Materials, J. Appl. Mech., 59, pp. 539 – 546, 1992.

    Chen, T., Thermoelastic properties and conductivity of composites reinforced by spherically anisotropic particles, Mech. Mater., 14, pp. 257 – 268, 1993.

    Christensen, R. M. and Lo, K. H., Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, 27, pp. 315 – 330, 1979.

    Duan, H. L., Wanga, J., Huanga, Z. P. and Karihaloo, B. L., Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress, J. Mech. Phys. Solids, 53, pp. 1574 – 1596, 2005.

    Finn, R., Equilibrium Capillary Surfaces, Springer –Verlag New York Inc., 1986.

    Freund, L. B., A surface chemical potential for elastic solids, J. Mech. Phys. Solids, 35, pp. 1835 – 1844, 1998.

    Yang, F., Size-dependent effective modulus of elastic composite materials:
    Spherical nano-cavities at dilute concentrations, J. Appl. Phys., 95, pp. 3516 – 3520, 2004.

    Gurtin, M. E., Weissmuller, J. and Larche, F., A general theory of curved deformable interfaces in solids at equilibrium, Philo. Mag. A, 78, pp. 1093 – 1109, 1998.

    Li, J. and Rao, N., Micromechanics of ferroelectric polymer-based electrostrictive composites, J. Mech. Phys. Solids, 52, pp. 591 – 615, 2004.
    Mischler, C., Baschnagel, J. and Binder, K., Polymer films in the normal-liquid and supercooled state: a review of recent Monte Carlo simulation results, Ad. Coll. Inter. Sci., 94, pp. 197 – 227, 2001.

    Pellicer, J., Garcia-Morales, V. and Hernández, M. J., On the demonstration of the Laplace -Young equation in introductory physics courses, Phys. Educ., 35(2), pp. 126 – 129, 2000.

    Rosen, B.W. and Hashin, Z., Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials, Int. J. Engng. Sci,. 8, pp. 157–173, 1970.

    Sharma, P., Size-Dependent Eshelby’s Tensor for Embedded Nano-inclusions incorporating Surface/Interface Energies, J. Appl. Mech., 71, pp. 663 – 671, 2004.

    Sharma, P., Ganti, S. and Bhate, N., Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett., 82, pp. 535 – 537, 2003.

    Sharma, P. and Sharma, R., On the Eshelby’s Inclusion Problem for Ellipsoids With Nonuniform Dilatational Gaussian and Exponential Eigenstrains, J. Appl. Mech., 70, pp. 418 – 425, 2003.

    Sharma, P. and Dasgupta A., Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materials containing spherical and cylindrical inhomogeneities, Phys. Rev. B, 66, pp. 224110-1 – 224110-10, 2002.

    William, D. N. and Huajian, G., An Atomistic Interpretation of Interface Stress, Scripta Mater., 39, pp. 1653 – 1661, 1998.

    洪維恩,數學運算大師Mathematica 4, 碁峯資訊,2001.

    下載圖示 校內:2006-06-22公開
    校外:2006-06-22公開
    QR CODE