| 研究生: |
陳佑瑜 Chen, Yow-Yu |
|---|---|
| 論文名稱: |
針尖誘導局部陽極氧化與蜇合劑非導電溶液的協同作用製備摻雜氮(N) TiO2/Ti 薄膜 Synergistic effect of chelating agents and tip-induced anodization through non-conducting solutions for Local deposition of N-doped TiO2 films on Ti substrates |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 溶液製程法 、選區局部陽極氧化法 、化學蜇合劑 、氮摻雜二氧化鈦薄膜 |
| 外文關鍵詞: | tip-induced anodization process, non-conducting solution, local anodization, chelating agent, nitrogen-doped TiO2 film |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] R. M. Pasquarelli, D. S. Ginley, and R. O'hayre, "Solution processing of transparent conductors: from flask to film," Chemical Society Reviews, 40(11), 5406-5441, (2011).
[2] L. T. Romankiw and D. R. Turner, "Proceedings of the Symposium on Electrodeposition Technology, Theory and Practice," Electrodeposition Division, Electrochemical Society, (1987).
[3] E. J. Taylor and M. Inman, "Electrochemical Surface Finishing," The Electrochemical Society Interface, 23(3), 57, (2014).
[4] M. U. Ahmed, M. M. Hossain, and E. Tamiya, "Electrochemical biosensors for medical and food applications," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 20(6), 616-626, (2008).
[5] S. Somasundaram, A. M. Pillai, A. Rajendra, and A. K. Sharma, "High emittance black nickel coating on copper substrate for space applications," Journal of Alloys and Compounds, 643, 263-269, (2015).
[6] S. S. Bhogal, V. Kumar, S. S. Dhami, and B. S. Pabla, "Preparation and properties of electrodeposited Ni-TiO2 composite coating," Journal of Electrochemical Science and Engineering, 5(1), 37-45, (2015).
[7] M. Toifur, Y. Yuningsih, and A. Khusnani, "Microstructure, thickness and sheet resistivity of Cu/Ni thin film produced by electroplating technique on the variation of electrolyte temperature," Journal of Physics: Conference Series, 997(1), 012053, (2018).
[8] T. Ameri Ekhtiarabadi, M. Zandrahimi, and H. Ebrahimifar, "The Impact of Current Density of Electroplating on Microstructure and Mechanical Properties of Ni-ZrO2-TiO2 Composite Coating," Advanced Ceramics Progress, 6(1), 22-29, (2020).
[9] Z. Su, M. Bühl, and W. Zhou, "Dissociation of Water During Formation of Anodic Aluminum Oxide," Journal of the American Chemical Society, 131(24), 8697-8702, (2009).
[10] Brace, A.W.; Sheasby, P.G. The Technology of Anodizing Aluminum; Technicopy Limited: Gloucestershire, UK, 1979; ISBN 0-905228-08-1.
[11] Aerts, T. Study of the Influence of Temperature and Heat Transfer during Anodic Oxide Growth on Aluminum.
[12] Thompson, G.E. Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Film. 1997, 297, 192–201.
[13] Abrahami, S. Cr(VI)-Free Pre-Treatments for Adhesive Bonding of Aerospace Aluminum Alloys. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2016.
[14] Sulka, G.D. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In Nanostructured Materials in Electrochemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 1–116. ISBN 978-3-527-62150-7.
[15] Regonini, D., Bowen, C. R., Jaroenworaluck, A., & Stevens, R. (2013). A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 74(12), 377-406.
[16] Xu, Y.; Thompson, G.E.; Wood, G.C.; Bethune, B. Anion incorporation and migration during barrier film formation on aluminum. Corros. Sci. 1987, 27, 83–102.
[17] Wernick, S.; Pinner, R. Surface Treatment and Finishing of Aluminum and Its Alloys, 4th ed.; Robert Draper Ltd.: Sevenoaks, UK, 1972; Volume I.
[18] Lee, W.; Park, S.-J. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chem. Rev. 2014, 114, 7487–7556.
[19] Takahashi, H.; Nagayama, M. The determination of the porosity of anodic oxide films on aluminum by the pore-filling method. Corros. Sci. 1978, 18, 911–925.
[20] O’Sullivan, J.P.; Wood, G.C. The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. London. A. Math. Phys. Sci. 1970, 317.
[21] G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, "Nucleation and growth of porous anodic films on aluminium," Nature, 272(5652), 433-435, (1978).
[22] Oh, J.; Thompson, C.V. The role of electric field in pore formation during aluminum anodization. Electrochim. Acta 2011, 56, 4044–4051.
[23] J. Siejka and C. Ortega, "An O18 study of field‐assisted pore formation in compact anodic oxide films on aluminum," Journal of the Electrochemical Society, 124(6), 883, (1977).
[24] P. Skeldon, G. E. Thompson, S. J. Garcia-Vergara, L. Iglesias-Rubianes, and C. E. Blanco-Pinzon, "A Tracer Study of Porous Anodic Alumina," Electrochemical and Solid-State Letters, 9(11), B47, (2006).
[25] A. Baron-Wiecheć, J. Ganem, S. Garcia-Vergara, P. Skeldon, G. Thompson, and I. Vickridge, "# 2# 1 Tracer Study of Porous Film Growth on Aluminum in Phosphoric Acid," Journal of the Electrochemical Society, 157(11), C399, (2010).
[26] Z. Wu, C. Richter, and L. Menon, "A study of anodization process during pore formation in nanoporous alumina templates," Journal of the Electrochemical Society, 154(1), E8, (2006).
[27] P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes, C.E. Blanco-Pinzon, Electrochem. Solid-State Lett. 9 (2006) B47–B5
[28] S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, "A flow model of porous anodic film growth on aluminium," Electrochimica Acta, 52(2), 681-687, (2006).
[29] N. Sato, "A theory for breakdown of anodic oxide films on metals," Electrochimica Acta, 16(10), 1683-1692, (1971)
[30] O. Jessensky, F. Müller, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics Letters, 72(10), 1173-1175, (1998).
[31] S. Garcia-Vergara, L. Iglesias-Rubianes, C. Blanco-Pinzon, P. Skeldon, G. Thompson, and P. Campestrini, "Mechanical instability and pore generation in anodic alumina," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2072), 2345-2358, (2006).
[32] X. Zhou, G. Thompson, H. Habazaki, M. Paez, K. Shimizu, P. Skeldon, and G. Wood, "Morphological development of oxygen bubbles in anodic alumina," Journal of the Electrochemical Society, 147(5), 1747, (2000).
[33] Park, S.Y.; Choi, W.J.; Choi, H.S.; Kwon, H.; Kim, S.H. Recent trends in surface treatment technologies for airframe adhesive bonding processing: A review (1995–2008). J. Adhes. 2010, 86, 192–221.
[34] V. Parkhutik and V. Shershulsky, "Theoretical modelling of porous oxide growth on aluminium," Journal of Physics D: Applied Physics, 25(8), 1258, (1992).
[35] W. Lee and S.-J. Park, "Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures," Chemical Reviews, 114(15), 7487-7556, (2014).
[36] J. Yahalom and T. P. Hoar, "Galvanostatic anodizing of aluminium," Electrochimica Acta, 15(6), 877-884, (1970).
[37] Q. Van Overmeere and J. Proost, "Stress-affected and stress-affecting instabilities during the growth of anodic oxide films," Electrochimica Acta, 56(28), 10507-10515, (2011).
[38] Paz Martínez-Viademonte, M.; Abrahami, S.T.; Hack, T.; Burchardt, M.; Terryn, H. A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection. Coatings 2020, 10, 1106.
[39] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, "Modification of hydrogen‐passivated silicon by a scanning tunneling microscope operating in air," Applied Physics Letters, 56(20), 2001-2003, (1990).
[40] P. Avouris, R. Martel, T. Hertel, and R. L. Sandstrom, "AFM-tip-induced and current-induced local oxidation of silicon and metals," Applied Physics A: Materials Science & Processing, 66, S659-S667, (1998).
[41] R. Garcia, A. W. Knoll, and E. Riedo, "Advanced scanning probe lithography," Nature Nanotechnology, 9(8), 577-587, (2014).
[42] S. Gómez-Moñivas, J. J. Sáenz, M. Calleja, and R. García, "Field-Induced Formation of Nanometer-Sized Water Bridges," Physical Review Letters, 91(5), 056101, (2003).
[43] M. Calleja, M. Tello, and R. Garcı́A, "Size determination of field-induced water menisci in noncontact atomic force microscopy," Journal of Applied Physics, 92(9), 5539-5542, (2002).
[44] Y. K. Ryu and R. Garcia, "Advanced oxidation scanning probe lithography," Nanotechnology, 28(14), 142003, (2017).
[45] M. Kakihana and M. Yoshimura, "Synthesis and Characteristics of Complex Multicomponent Oxides Prepared by Polymer Complex Method," Bulletin of the Chemical Society of Japan, 72(7), 1427-1443, (1999).
[46] R. Garcia, M. Calleja, and H. Rohrer, "Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges," Journal of Applied Physics, 86(4), 1898-1903, (1999).
[47] M. S. Naidu and V. Kamaraju, "High-Voltage Engineering | 6th Edition," (2020).
[48] E. Kuffel, W. S. Zaengl, and J. Kuffel, Chapter 6 - Breakdown in solid and liquid dielectrics, in High Voltage Engineering Fundamentals (Second Edition), E. Kuffel, W. S. Zaengl, and J. Kuffel, Editors. 2000, Newnes: Oxford. p. 367-394.
[49] Hall Graham 2008Maxwell's electromagnetic theory and special relativity. Phil. Trans. R. Soc. A.366 1849–1860.
[50] K. Azmi, A. Ahmad, and M. Kamarol, "Study of Dielectric Properties of a Potential RBD Palm Oil and RBD Soybean Oil Mixture as Insulating Liquid in Transformer," Journal of Electrical Engineering and Technology, 10, 2105-2119, (2015).
[51] Y.P. Raizer, Gas Discharge Physics, Springer, Berlin, 1991, p. 345.
[52] S.-R. Jian, T.-H. Fang, and D.-S. Chuu, "Mechanisms of p-GaAs(100) surface by atomic force microscope nano-oxidation," Journal of Physics D: Applied Physics, 38(14), 2424, (2005).
[53] D. Graf, M. Frommenwiler, P. Studerus, T. Ihn, K. Ensslin, D. Driscoll, and A. Gossard, "Local oxidation of Ga [Al] As heterostructures with modulated tip-sample voltages," Journal of Applied Physics, 99(5), 053707, (2006).
[54] D. John, F. Perez-Murano, C. Martin, H. Kuramochi, and H. Yokoyama, "Current, Charge, and Capacitance During Scanning Probe Oxidation. I. Maximum Charge Density and Lateral Diffusion," (2004).
[55] C.-H. Tsai, S.-R. Jian, and H.-C. Wen, "Tip-induced local anodic oxidation on p-GaAs surface with non-contact atomic force microscopy," Applied Surface Science, 254(5), 1357-1362, (2007).
[56] J. W. Schultze and A. Bressel, "Principles of electrochemical micro- and nano-system technologies," Electrochimica Acta, 47(1), 3-21, (2001).
[57] W.-P. Huang, H.-H. Cheng, S.-R. Jian, D.-S. Chuu, J.-Y. Hsieh, C.-M. Lin, and M.-S. Chiang, "Localized electrochemical oxidation of p-GaAs (100) using atomic force microscopy with a carbon nanotube probe," Nanotechnology, 17(15), 3838, (2006).
[58] M. Passlack, N. Hunt, E. Schubert, G. Zydzik, M. Hong, J. Mannaerts, R. Opila, and R. Fischer, "Dielectric properties of electron‐beam deposited Ga2O3 films," Applied Physics Letters, 64(20), 2715-2717, (1994).
[59] J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, "Role of space charge in scanned probe oxidation," Journal of Applied Physics, 84(12), 6891-6900, (1998).
[60] X. Wang, B. Theogene, H. Mei, J. Zhang, C. Huang, X. Ren, and M. Xu, "Impact of various parameters on nanostructures fabrication mechanism on silicon surface with AFM tip induced local anodic oxidation," Ferroelectrics, 549(1), 70-77, (2019).
[61] F. Pérez-Murano, K. Birkelund, K. Morimoto, and J. A. Dagata, "Voltage modulation scanned probe oxidation," Applied Physics Letters, 75(2), 199-201, (1999).
[62] M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, and L. Börjesson, "Polymerized complex synthesis and intergranular coupling of Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors characterized by complex magnetic susceptibility," Journal of Applied Physics, 71(8), 3904-3910, (1992).
[63] M. Yoshimura, "Soft solution processing: Concept and realization of direct fabrication of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) in solutions without post-firing," Journal of Materials Science, 41, 1299-1306, (2006).
[64] S. Kumar, G. L. Messing, and W. B. White, "Metal organic resin derived barium titanate: I, formation of barium titanium oxycarbonate intermediate," Journal of the American Ceramic Society, 76(3), 617-624, (1993).
[65] M. Yoshimura, J. Ma, and M. Kakihana, "Low-temperature synthesis of cubic and rhombohedral Y6WO12 by a polymerized complex method," Journal of the American Ceramic Society, 81(10), 2721-2724, (1998).
[66] P. A. Lessing, "Mixed-cation oxide powders via polymeric precursors," American Ceramic Society Bulletin, 68(5), 1002-1007, (1989).
[67] A. Llusco, M. Grageda, and S. Ushak, "Kinetic and thermodynamic studies on synthesis of Mg-doped LiMn2O4 nanoparticles," Nanomaterials, 10(7), 1409, (2020).
[68] G. Jes S, E. Sánchez, L. P. Francisco, Q. Cristina, M. Compeán, N. Mar a-Eugenia, G. L. Jes S, and F. Ruiz, A Comparative Study of the Chelating Effect Between Textured Soya Aqueous Extract and EDTA on Fe3+, Pb2+, Hg2+, Cd2+ and Ni2+ Ions. 2011.
[69] The Dow Chemical Company, "General concepts of the chemistry of chelation" Chelation chemistry , (2021)
[70] M. R. Tchalala, H. Enriquez, A. Bendounan, A. J. Mayne, G. Dujardin, A. Kara, M. A. Ali, and H. Oughaddou, "Tip-induced oxidation of silicene nano-ribbons," Nanoscale Advances, 2(6), 2309-2314, (2020).
[71] J. P. Ibe, P. P. Bey, Jr., S. L. Brandow, R. A. Brizzolara, N. A. Burnham, D. P. Dilella, K. P. Lee, C. R. K. Marrian, and R. J. Colton, "On the electrochemical etching of tips for scanning tunneling microscopy," Journal of Vacuum Science & Technology A, 8(4), 3570-3575, (1990).
[72] T.-H. Duong and H.-C. Kim, "Electrochemical etching technique for tungsten electrodes with controllable profiles for micro-electrical discharge machining," International Journal of Precision Engineering and Manufacturing, 16, 1053-1060, (2015).
[73] B. Li, Y. Zhang, J. Wang, Z. Jia, C. Shi, Y. Ma, and L. Ma, "Fabricating ultra-sharp tungsten STM tips with high yield: double-electrolyte etching method and machine learning," SN Applied Sciences, 2, 1-13, (2020).
[74] A. E. Aliev and R. H. Baughman, "Shaping nanomaterials by short electrical pulses," Nanotechnology, 31(36), 365302, (2020).
[75] J. Zhang, P. Wang, X. Zhang, H. Ji, J. Luo, H. Wang, and J. Wang, "Systematic electrochemical etching of various metal tips for tunneling spectroscopy and scanning probe microscopy," Review of Scientific Instruments, 92(1), 015124, (2021).
[76] STM tip preparation – Zeljkovic Lab - Boston College
[77] G. Christidis, O. B. Fabrichnaya, S. M. Koepfli, E. Poloni, J. Winiger, Y. M. Fedoryshyn, A. V. Gusarov, M. Ilatovskaia, I. Saenko, and G. Savinykh, "Photonic response and temperature evolution of SiO2/TiO2 multilayers," Journal of Materials Science, 56, 18440-18452, (2021).
[78] S. Saravanan and R. S. Dubey, "Ultraviolet and visible reflective TiO2/SiO2 thin films on silicon using sol-gel spin coater," Наносистемы: физика, химия, математика, 12(3), 311-316, (2021).
[79] H. Berger, H. Tang, and F. Lévy, "Growth and Raman spectroscopic characterization of TiO2 anatase single crystals," Journal of Crystal Growth, 130(1-2), 108-112, (1993).
[80] M. A. Boda and M. A. Shah, "Fabrication mechanism of compact TiO2 nanotubes and their photo-electrochemical ability," Materials Research Express, 4(7), 075908, (2017).
[81] T. Ohsaka, F. Izumi, and Y. Fujiki, "Raman spectrum of anatase, TiO2," Journal of Raman spectroscopy, 7(6), 321-324, (1978).
[82] I. Beattie and T. Gilson, "Single crystal laser Raman spectroscopy," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 307(1491), 407-429, (1968).
[83] M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn," Applied Surface Science, 257(3), 887-898, (2010).
[84] C. Wagner, A. Naumkin, A. Kraut-Vass, J. Allison, C. Powell, and J. Rumble Jr, "NIST standard reference database 20, Version 3.4 (Web version)," National Institute of Standards and Technology: Gaithersburg, MD, 20899, (2003).
[85] G. Greczynski and L. Hultman, "Referencing to adventitious carbon in X-ray photoelectron spectroscopy: can differential charging explain C 1s peak shifts?," Applied Surface Science, 606, 154855, (2022).
[86] S. S. Lee, C. Park, N. C. Sturchio, and P. Fenter, "Nonclassical behavior in competitive ion adsorption at a charged solid–water interface," The Journal of Physical Chemistry Letters, 11(10), 4029-4035, (2020).
[87] G. Montanari, "IEEE Guide for the statistical analysis of electrical insulation breakdown data," (2005).
[88] J. Kwon, K. Choi, M. Schreck, T. Liu, E. Tervoort, and M. Niederberger, "Gas-Phase Nitrogen Doping of Monolithic TiO2 Nanoparticle-Based Aerogels for Efficient Visible Light-Driven Photocatalytic H2 Production," ACS Applied Materials & Interfaces, 13(45), 53691-53701, (2021).
[89] M. Sathish, B. Viswanathan, R. Viswanath, and C. S. Gopinath, "Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst," Chemistry of materials, 17(25), 6349-6353, (2005).
[90] Yu-Cyuan, Hou, “Fabrication of selective-area (N or Ti)-doped Al2O3 films on Al substrates through chelating-agent-assisted local anodization processes using non-conducting solutions,” National Cheng Kung University Library, (2023).
校內:2026-08-17公開