簡易檢索 / 詳目顯示

研究生: 陳佑瑜
Chen, Yow-Yu
論文名稱: 針尖誘導局部陽極氧化與蜇合劑非導電溶液的協同作用製備摻雜氮(N) TiO2/Ti 薄膜
Synergistic effect of chelating agents and tip-induced anodization through non-conducting solutions for Local deposition of N-doped TiO2 films on Ti substrates
指導教授: 張高碩
Chang, Kao-Shuo
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 142
中文關鍵詞: 溶液製程法選區局部陽極氧化法化學蜇合劑氮摻雜二氧化鈦薄膜
外文關鍵詞: tip-induced anodization process, non-conducting solution, local anodization, chelating agent, nitrogen-doped TiO2 film
相關次數: 點閱:60下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Film deposition techniques 1 1.1.2 Solution processing 1 1.1.2.1 Conventional approach: electrodeposition through electrolyte solution 3 1.1.2.1.1 Electroplating 4 1.1.2.1.2 Anodization 8 1.1.2.1.2.1 Working Principles 8 1.1.2.1.2.2 Two types of anodic layers: barrier type & porous type 10 1.1.2.1.2.2.1 Barrier-type anodic layers 10 1.1.2.1.2.2.2 Porous/tubular-type anodic layers 12 1.1.2.1.2.3 Field assisted dissolution of films 13 1.1.2.1.2.4 Field assisted oxidation of films 16 1.1.2.1.2.5 Effect of Applied Voltage or Current 19 1.1.2.1.2.6 Application 21 1.1.2.2 Novel approach: electrochemical deposition in non-conducting solutions 22 1.1.2.2.1 Localized Anodization in Non-conductive Solutions 26 Non-conductive solutions 27 High voltage & low current 27 Tip – substrate distance 29 Radius of sharp tip 30 Tip scanning rate 31 1.1.2.2.1.1 Tip–substrate interface interaction 33 1.1.2.2.1.1.1 Bias-induced oxidation 33 1.1.2.2.1.1.2 Space charge effect 35 1.1.2.2.2 Doping by Polymerized complex method 37 1.1.2.2.2.1 Chelation reaction 39 1.1.2.2.2.2 Why is chelating agent needed? 40 1.1.2.2.2.3 Polymerization reaction 41 Addition polymerization 42 Condensation polymerization 42 1.2 Fabrication process of a sharp tip 43 1.2.1 Background of electrochemical etching 43 1.2.2 Mechanism of tip etching 45 1.2.3 Experimental parameters for the fabrication process of tip-etching 47 Chapter 2 Experimental method 48 2.1 Materials 48 2.1.1 Chemicals for solution precursors 48 2.1.2 Chemicals for substrate cleaning 48 2.1.3 Substrate 49 2.1.4 Substrate cleaning process 49 2.2 Fabrication process of a tungsten tip 51 2.2.1 Materials and equipment 51 2.2.2 Experimental procedure for the fabrication of a tungsten tip 53 2.2.3 Tungsten tip cleaning 57 2.3 Preparation of precursor solutions 59 2.3.1 Preparation of titanium polymerized complex precursors (with citric acid) 59 2.3.2 Preparation of titanium complex precursors (without citric acid) 60 2.3.3 Preparation of nitrogen-contained precursors 61 2.4 Experiment setup 62 2.5 Plasma test experiment 68 2.6 Non-conductive solutions test 70 2.7 Fabrication of titanium-doped SiO2 films on silicon substrates 70 2.8 Fabrication of TiO2 films on titanium substrates 71 2.9 Fabrication of nitrogen-doped TiO2 films on titanium substrates through chelating agent 71 2.10 Characterization 73 2.10.1 X-ray diffraction (XRD) analysis 73 2.10.2 Optical microscopy (OM) 74 2.10.3 High Resolution Scanning Electron Microscope (SEM) 74 2.10.4 X-ray Photoelectron Spectroscopy (XPS) 75 2.10.5 Alpha-step analysis 76 2.10.6 Optical emission spectrum test (OES) 77 2.10.7 Conductivity- TDS-Salinity meter 78 Chapter 3 Results and discussion 79 3.1 Electrochemical reaction in conductive solutions 79 3.2 Electrochemical reaction in non-conductive solutions 80 3.3 Tip induced local anodic oxidation in non-conductive solutions 81 3.4 Various non-conductive solutions 82 3.5 Tip induced oxidation on silicon substrates 84 3.5.1 Experimental parameters 85 3.5.1.1 Distance between a tip and a substrate 85 3.5.1.2 Voltage / current for oxide surface morphology 86 3.5.1.3 Time effect on the size of films 89 3.5.1.4 Time effect on thickness of films 90 3.5.1.5 Stability study of a cathodic tungsten tip 91 3.5.2 Characterization of the film on Si substrates 98 3.5.2.1 XRD 98 3.5.2.2 Raman spectroscopy 99 3.5.2.3 SEM EDS mapping 101 3.5.2.4 XPS 104 3.5.2.5 XPS depth profile 106 3.6 Tip induced oxidation on a Ti substrate 109 3.6.1 Experimental parameters 109 3.6.1.1 Voltage / current to tune the morphology of resulting oxide films 109 3.6.1.2 Time effect on the size of the films 112 3.6.1.3 Scanning rate effect on film thickness 113 3.6.2 Characterization of the TiO2 film 115 3.6.2.1 XRD 115 3.6.2.2 XPS 117 3.6.2.3 SEM 119 3.6.2.4 SEM EDS mapping 120 3.6.3 Nitrogen-doped TiO2 films 121 3.6.3.1 Tuning of nitrogen concentrations 121 3.6.3.1.1 Heating temperature of precursors & anodization time 121 3.6.3.1.2 Amounts of urea 122 3.6.3.2 Characterization of N-TiO2 124 3.6.3.2.1 XPS 124 3.6.3.2.2 SEM EDS mapping 126 Chapter 4 Conclusions and future work 128 4.1 Conclusions 128 4.2 Future work 130 Chapter 5 References 131

    [1] R. M. Pasquarelli, D. S. Ginley, and R. O'hayre, "Solution processing of transparent conductors: from flask to film," Chemical Society Reviews, 40(11), 5406-5441, (2011).
    [2] L. T. Romankiw and D. R. Turner, "Proceedings of the Symposium on Electrodeposition Technology, Theory and Practice," Electrodeposition Division, Electrochemical Society, (1987).
    [3] E. J. Taylor and M. Inman, "Electrochemical Surface Finishing," The Electrochemical Society Interface, 23(3), 57, (2014).
    [4] M. U. Ahmed, M. M. Hossain, and E. Tamiya, "Electrochemical biosensors for medical and food applications," Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 20(6), 616-626, (2008).
    [5] S. Somasundaram, A. M. Pillai, A. Rajendra, and A. K. Sharma, "High emittance black nickel coating on copper substrate for space applications," Journal of Alloys and Compounds, 643, 263-269, (2015).
    [6] S. S. Bhogal, V. Kumar, S. S. Dhami, and B. S. Pabla, "Preparation and properties of electrodeposited Ni-TiO2 composite coating," Journal of Electrochemical Science and Engineering, 5(1), 37-45, (2015).
    [7] M. Toifur, Y. Yuningsih, and A. Khusnani, "Microstructure, thickness and sheet resistivity of Cu/Ni thin film produced by electroplating technique on the variation of electrolyte temperature," Journal of Physics: Conference Series, 997(1), 012053, (2018).
    [8] T. Ameri Ekhtiarabadi, M. Zandrahimi, and H. Ebrahimifar, "The Impact of Current Density of Electroplating on Microstructure and Mechanical Properties of Ni-ZrO2-TiO2 Composite Coating," Advanced Ceramics Progress, 6(1), 22-29, (2020).
    [9] Z. Su, M. Bühl, and W. Zhou, "Dissociation of Water During Formation of Anodic Aluminum Oxide," Journal of the American Chemical Society, 131(24), 8697-8702, (2009).
    [10] Brace, A.W.; Sheasby, P.G. The Technology of Anodizing Aluminum; Technicopy Limited: Gloucestershire, UK, 1979; ISBN 0-905228-08-1.
    [11] Aerts, T. Study of the Influence of Temperature and Heat Transfer during Anodic Oxide Growth on Aluminum.
    [12] Thompson, G.E. Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Film. 1997, 297, 192–201.
    [13] Abrahami, S. Cr(VI)-Free Pre-Treatments for Adhesive Bonding of Aerospace Aluminum Alloys. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2016.
    [14] Sulka, G.D. Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing. In Nanostructured Materials in Electrochemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008; pp. 1–116. ISBN 978-3-527-62150-7.
    [15] Regonini, D., Bowen, C. R., Jaroenworaluck, A., & Stevens, R. (2013). A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Materials Science and Engineering: R: Reports, 74(12), 377-406.
    [16] Xu, Y.; Thompson, G.E.; Wood, G.C.; Bethune, B. Anion incorporation and migration during barrier film formation on aluminum. Corros. Sci. 1987, 27, 83–102.
    [17] Wernick, S.; Pinner, R. Surface Treatment and Finishing of Aluminum and Its Alloys, 4th ed.; Robert Draper Ltd.: Sevenoaks, UK, 1972; Volume I.
    [18] Lee, W.; Park, S.-J. Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chem. Rev. 2014, 114, 7487–7556.
    [19] Takahashi, H.; Nagayama, M. The determination of the porosity of anodic oxide films on aluminum by the pore-filling method. Corros. Sci. 1978, 18, 911–925.
    [20] O’Sullivan, J.P.; Wood, G.C. The morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. London. A. Math. Phys. Sci. 1970, 317.
    [21] G. E. Thompson, R. C. Furneaux, G. C. Wood, J. A. Richardson, and J. S. Goode, "Nucleation and growth of porous anodic films on aluminium," Nature, 272(5652), 433-435, (1978).
    [22] Oh, J.; Thompson, C.V. The role of electric field in pore formation during aluminum anodization. Electrochim. Acta 2011, 56, 4044–4051.
    [23] J. Siejka and C. Ortega, "An O18 study of field‐assisted pore formation in compact anodic oxide films on aluminum," Journal of the Electrochemical Society, 124(6), 883, (1977).
    [24] P. Skeldon, G. E. Thompson, S. J. Garcia-Vergara, L. Iglesias-Rubianes, and C. E. Blanco-Pinzon, "A Tracer Study of Porous Anodic Alumina," Electrochemical and Solid-State Letters, 9(11), B47, (2006).
    [25] A. Baron-Wiecheć, J. Ganem, S. Garcia-Vergara, P. Skeldon, G. Thompson, and I. Vickridge, "# 2# 1 Tracer Study of Porous Film Growth on Aluminum in Phosphoric Acid," Journal of the Electrochemical Society, 157(11), C399, (2010).
    [26] Z. Wu, C. Richter, and L. Menon, "A study of anodization process during pore formation in nanoporous alumina templates," Journal of the Electrochemical Society, 154(1), E8, (2006).
    [27] P. Skeldon, G.E. Thompson, S.J. Garcia-Vergara, L. Iglesias-Rubianes, C.E. Blanco-Pinzon, Electrochem. Solid-State Lett. 9 (2006) B47–B5
    [28] S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, "A flow model of porous anodic film growth on aluminium," Electrochimica Acta, 52(2), 681-687, (2006).
    [29] N. Sato, "A theory for breakdown of anodic oxide films on metals," Electrochimica Acta, 16(10), 1683-1692, (1971)
    [30] O. Jessensky, F. Müller, and U. Gösele, "Self-organized formation of hexagonal pore arrays in anodic alumina," Applied Physics Letters, 72(10), 1173-1175, (1998).
    [31] S. Garcia-Vergara, L. Iglesias-Rubianes, C. Blanco-Pinzon, P. Skeldon, G. Thompson, and P. Campestrini, "Mechanical instability and pore generation in anodic alumina," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462(2072), 2345-2358, (2006).
    [32] X. Zhou, G. Thompson, H. Habazaki, M. Paez, K. Shimizu, P. Skeldon, and G. Wood, "Morphological development of oxygen bubbles in anodic alumina," Journal of the Electrochemical Society, 147(5), 1747, (2000).
    [33] Park, S.Y.; Choi, W.J.; Choi, H.S.; Kwon, H.; Kim, S.H. Recent trends in surface treatment technologies for airframe adhesive bonding processing: A review (1995–2008). J. Adhes. 2010, 86, 192–221.
    [34] V. Parkhutik and V. Shershulsky, "Theoretical modelling of porous oxide growth on aluminium," Journal of Physics D: Applied Physics, 25(8), 1258, (1992).
    [35] W. Lee and S.-J. Park, "Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures," Chemical Reviews, 114(15), 7487-7556, (2014).
    [36] J. Yahalom and T. P. Hoar, "Galvanostatic anodizing of aluminium," Electrochimica Acta, 15(6), 877-884, (1970).
    [37] Q. Van Overmeere and J. Proost, "Stress-affected and stress-affecting instabilities during the growth of anodic oxide films," Electrochimica Acta, 56(28), 10507-10515, (2011).
    [38] Paz Martínez-Viademonte, M.; Abrahami, S.T.; Hack, T.; Burchardt, M.; Terryn, H. A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection. Coatings 2020, 10, 1106.
    [39] J. A. Dagata, J. Schneir, H. H. Harary, C. J. Evans, M. T. Postek, and J. Bennett, "Modification of hydrogen‐passivated silicon by a scanning tunneling microscope operating in air," Applied Physics Letters, 56(20), 2001-2003, (1990).
    [40] P. Avouris, R. Martel, T. Hertel, and R. L. Sandstrom, "AFM-tip-induced and current-induced local oxidation of silicon and metals," Applied Physics A: Materials Science & Processing, 66, S659-S667, (1998).
    [41] R. Garcia, A. W. Knoll, and E. Riedo, "Advanced scanning probe lithography," Nature Nanotechnology, 9(8), 577-587, (2014).
    [42] S. Gómez-Moñivas, J. J. Sáenz, M. Calleja, and R. García, "Field-Induced Formation of Nanometer-Sized Water Bridges," Physical Review Letters, 91(5), 056101, (2003).
    [43] M. Calleja, M. Tello, and R. Garcı́A, "Size determination of field-induced water menisci in noncontact atomic force microscopy," Journal of Applied Physics, 92(9), 5539-5542, (2002).
    [44] Y. K. Ryu and R. Garcia, "Advanced oxidation scanning probe lithography," Nanotechnology, 28(14), 142003, (2017).
    [45] M. Kakihana and M. Yoshimura, "Synthesis and Characteristics of Complex Multicomponent Oxides Prepared by Polymer Complex Method," Bulletin of the Chemical Society of Japan, 72(7), 1427-1443, (1999).
    [46] R. Garcia, M. Calleja, and H. Rohrer, "Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges," Journal of Applied Physics, 86(4), 1898-1903, (1999).
    [47] M. S. Naidu and V. Kamaraju, "High-Voltage Engineering | 6th Edition," (2020).
    [48] E. Kuffel, W. S. Zaengl, and J. Kuffel, Chapter 6 - Breakdown in solid and liquid dielectrics, in High Voltage Engineering Fundamentals (Second Edition), E. Kuffel, W. S. Zaengl, and J. Kuffel, Editors. 2000, Newnes: Oxford. p. 367-394.
    [49] Hall Graham 2008Maxwell's electromagnetic theory and special relativity. Phil. Trans. R. Soc. A.366 1849–1860.
    [50] K. Azmi, A. Ahmad, and M. Kamarol, "Study of Dielectric Properties of a Potential RBD Palm Oil and RBD Soybean Oil Mixture as Insulating Liquid in Transformer," Journal of Electrical Engineering and Technology, 10, 2105-2119, (2015).
    [51] Y.P. Raizer, Gas Discharge Physics, Springer, Berlin, 1991, p. 345.
    [52] S.-R. Jian, T.-H. Fang, and D.-S. Chuu, "Mechanisms of p-GaAs(100) surface by atomic force microscope nano-oxidation," Journal of Physics D: Applied Physics, 38(14), 2424, (2005).
    [53] D. Graf, M. Frommenwiler, P. Studerus, T. Ihn, K. Ensslin, D. Driscoll, and A. Gossard, "Local oxidation of Ga [Al] As heterostructures with modulated tip-sample voltages," Journal of Applied Physics, 99(5), 053707, (2006).
    [54] D. John, F. Perez-Murano, C. Martin, H. Kuramochi, and H. Yokoyama, "Current, Charge, and Capacitance During Scanning Probe Oxidation. I. Maximum Charge Density and Lateral Diffusion," (2004).
    [55] C.-H. Tsai, S.-R. Jian, and H.-C. Wen, "Tip-induced local anodic oxidation on p-GaAs surface with non-contact atomic force microscopy," Applied Surface Science, 254(5), 1357-1362, (2007).
    [56] J. W. Schultze and A. Bressel, "Principles of electrochemical micro- and nano-system technologies," Electrochimica Acta, 47(1), 3-21, (2001).
    [57] W.-P. Huang, H.-H. Cheng, S.-R. Jian, D.-S. Chuu, J.-Y. Hsieh, C.-M. Lin, and M.-S. Chiang, "Localized electrochemical oxidation of p-GaAs (100) using atomic force microscopy with a carbon nanotube probe," Nanotechnology, 17(15), 3838, (2006).
    [58] M. Passlack, N. Hunt, E. Schubert, G. Zydzik, M. Hong, J. Mannaerts, R. Opila, and R. Fischer, "Dielectric properties of electron‐beam deposited Ga2O3 films," Applied Physics Letters, 64(20), 2715-2717, (1994).
    [59] J. A. Dagata, T. Inoue, J. Itoh, K. Matsumoto, and H. Yokoyama, "Role of space charge in scanned probe oxidation," Journal of Applied Physics, 84(12), 6891-6900, (1998).
    [60] X. Wang, B. Theogene, H. Mei, J. Zhang, C. Huang, X. Ren, and M. Xu, "Impact of various parameters on nanostructures fabrication mechanism on silicon surface with AFM tip induced local anodic oxidation," Ferroelectrics, 549(1), 70-77, (2019).
    [61] F. Pérez-Murano, K. Birkelund, K. Morimoto, and J. A. Dagata, "Voltage modulation scanned probe oxidation," Applied Physics Letters, 75(2), 199-201, (1999).
    [62] M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, and L. Börjesson, "Polymerized complex synthesis and intergranular coupling of Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors characterized by complex magnetic susceptibility," Journal of Applied Physics, 71(8), 3904-3910, (1992).
    [63] M. Yoshimura, "Soft solution processing: Concept and realization of direct fabrication of shaped ceramics (nano-crystals, whiskers, films, and/or patterns) in solutions without post-firing," Journal of Materials Science, 41, 1299-1306, (2006).
    [64] S. Kumar, G. L. Messing, and W. B. White, "Metal organic resin derived barium titanate: I, formation of barium titanium oxycarbonate intermediate," Journal of the American Ceramic Society, 76(3), 617-624, (1993).
    [65] M. Yoshimura, J. Ma, and M. Kakihana, "Low-temperature synthesis of cubic and rhombohedral Y6WO12 by a polymerized complex method," Journal of the American Ceramic Society, 81(10), 2721-2724, (1998).
    [66] P. A. Lessing, "Mixed-cation oxide powders via polymeric precursors," American Ceramic Society Bulletin, 68(5), 1002-1007, (1989).
    [67] A. Llusco, M. Grageda, and S. Ushak, "Kinetic and thermodynamic studies on synthesis of Mg-doped LiMn2O4 nanoparticles," Nanomaterials, 10(7), 1409, (2020).
    [68] G. Jes S, E. Sánchez, L. P. Francisco, Q. Cristina, M. Compeán, N. Mar a-Eugenia, G. L. Jes S, and F. Ruiz, A Comparative Study of the Chelating Effect Between Textured Soya Aqueous Extract and EDTA on Fe3+, Pb2+, Hg2+, Cd2+ and Ni2+ Ions. 2011.
    [69] The Dow Chemical Company, "General concepts of the chemistry of chelation" Chelation chemistry , (2021)
    [70] M. R. Tchalala, H. Enriquez, A. Bendounan, A. J. Mayne, G. Dujardin, A. Kara, M. A. Ali, and H. Oughaddou, "Tip-induced oxidation of silicene nano-ribbons," Nanoscale Advances, 2(6), 2309-2314, (2020).
    [71] J. P. Ibe, P. P. Bey, Jr., S. L. Brandow, R. A. Brizzolara, N. A. Burnham, D. P. Dilella, K. P. Lee, C. R. K. Marrian, and R. J. Colton, "On the electrochemical etching of tips for scanning tunneling microscopy," Journal of Vacuum Science & Technology A, 8(4), 3570-3575, (1990).
    [72] T.-H. Duong and H.-C. Kim, "Electrochemical etching technique for tungsten electrodes with controllable profiles for micro-electrical discharge machining," International Journal of Precision Engineering and Manufacturing, 16, 1053-1060, (2015).
    [73] B. Li, Y. Zhang, J. Wang, Z. Jia, C. Shi, Y. Ma, and L. Ma, "Fabricating ultra-sharp tungsten STM tips with high yield: double-electrolyte etching method and machine learning," SN Applied Sciences, 2, 1-13, (2020).
    [74] A. E. Aliev and R. H. Baughman, "Shaping nanomaterials by short electrical pulses," Nanotechnology, 31(36), 365302, (2020).
    [75] J. Zhang, P. Wang, X. Zhang, H. Ji, J. Luo, H. Wang, and J. Wang, "Systematic electrochemical etching of various metal tips for tunneling spectroscopy and scanning probe microscopy," Review of Scientific Instruments, 92(1), 015124, (2021).
    [76] STM tip preparation – Zeljkovic Lab - Boston College
    [77] G. Christidis, O. B. Fabrichnaya, S. M. Koepfli, E. Poloni, J. Winiger, Y. M. Fedoryshyn, A. V. Gusarov, M. Ilatovskaia, I. Saenko, and G. Savinykh, "Photonic response and temperature evolution of SiO2/TiO2 multilayers," Journal of Materials Science, 56, 18440-18452, (2021).
    [78] S. Saravanan and R. S. Dubey, "Ultraviolet and visible reflective TiO2/SiO2 thin films on silicon using sol-gel spin coater," Наносистемы: физика, химия, математика, 12(3), 311-316, (2021).
    [79] H. Berger, H. Tang, and F. Lévy, "Growth and Raman spectroscopic characterization of TiO2 anatase single crystals," Journal of Crystal Growth, 130(1-2), 108-112, (1993).
    [80] M. A. Boda and M. A. Shah, "Fabrication mechanism of compact TiO2 nanotubes and their photo-electrochemical ability," Materials Research Express, 4(7), 075908, (2017).
    [81] T. Ohsaka, F. Izumi, and Y. Fujiki, "Raman spectrum of anatase, TiO2," Journal of Raman spectroscopy, 7(6), 321-324, (1978).
    [82] I. Beattie and T. Gilson, "Single crystal laser Raman spectroscopy," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 307(1491), 407-429, (1968).
    [83] M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn," Applied Surface Science, 257(3), 887-898, (2010).
    [84] C. Wagner, A. Naumkin, A. Kraut-Vass, J. Allison, C. Powell, and J. Rumble Jr, "NIST standard reference database 20, Version 3.4 (Web version)," National Institute of Standards and Technology: Gaithersburg, MD, 20899, (2003).
    [85] G. Greczynski and L. Hultman, "Referencing to adventitious carbon in X-ray photoelectron spectroscopy: can differential charging explain C 1s peak shifts?," Applied Surface Science, 606, 154855, (2022).
    [86] S. S. Lee, C. Park, N. C. Sturchio, and P. Fenter, "Nonclassical behavior in competitive ion adsorption at a charged solid–water interface," The Journal of Physical Chemistry Letters, 11(10), 4029-4035, (2020).
    [87] G. Montanari, "IEEE Guide for the statistical analysis of electrical insulation breakdown data," (2005).
    [88] J. Kwon, K. Choi, M. Schreck, T. Liu, E. Tervoort, and M. Niederberger, "Gas-Phase Nitrogen Doping of Monolithic TiO2 Nanoparticle-Based Aerogels for Efficient Visible Light-Driven Photocatalytic H2 Production," ACS Applied Materials & Interfaces, 13(45), 53691-53701, (2021).
    [89] M. Sathish, B. Viswanathan, R. Viswanath, and C. S. Gopinath, "Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst," Chemistry of materials, 17(25), 6349-6353, (2005).
    [90] Yu-Cyuan, Hou, “Fabrication of selective-area (N or Ti)-doped Al2O3 films on Al substrates through chelating-agent-assisted local anodization processes using non-conducting solutions,” National Cheng Kung University Library, (2023).

    無法下載圖示 校內:2026-08-17公開
    校外:2026-08-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE