| 研究生: |
鄭之浩 Cheng, Chih-Hao |
|---|---|
| 論文名稱: |
考慮高階表面力於奈米尺度平板之挫曲與共振頻率 Buckling and Resonance Frequency of Nanoplates with High-order Surface Stresses |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 界面/表面力 、廣義Young-Laplace方程式 、尺寸效應 、挫曲 、共振頻率 |
| 外文關鍵詞: | Interface/Surface stress, Generalized Young-Laplace equation, Size-dependent behavior |
| 相關次數: | 點閱:115 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在奈米尺度下,材料與結構的力學性質呈現顯著的尺寸效應,主要的原因為表面力的影響所致。本文主要探討高階表/界面力對板結構挫曲和振動的影響,所使用的高階表面力模型,是傳統表面力模型之延伸,主要內容為在材料表面或交界處同時考慮薄膜應力與界面彎矩之合效應。本文將高階表面應力條件導入古典板理論的數學模式,以圓形與矩形板為例,求解簡支承及固定端等不同邊界條件下,平板結構的臨界挫屈力與共振頻率。比較高階界面模型、傳統界面應力模型與線彈性古典板三者之數值結果可發現,高階界面效應會導致臨界挫屈力與自然共振頻率提升,此趨勢隨著結構尺寸減少也變得更加明顯。本文目標希望所提出之理論架構,能更精準的評估奈米尺度下結構的力學行為。
A refined mathematical framework of high-order surface stresses, extended from the conventional surface stresses model, is implemented in the mathematical framework for the modeling of buckling load and resonance frequency of nanoplates. The high-order interface stresses are formulated following the proposition of non-uniform surface stress across the layer thickness, and thereby effectively inducing a membrane stress as well as surface moment. In the formulation the deformation of the thin interphase is approximated by the Kirchhoff-Love assumption of thin plate. In illustration, circular and rectangular nanoplates with simply supported or clamped boundary conditions are exemplified. Analytic for numerical solutions of the derived results are compared with the simplified solutions based on conventional surface stress model and on the classical results of linear elasticity. We aim to explore the scope of applicability that the refined continuum mechanics model could be a valid approach in the estimate of mechanical behavior of nanoplates.
1. Ansari, R., Sahmani, S., Surface stress effects on the free vibration behavior of nanoplates. Int. J. Eng. Sci. 49, pp.1204-1215, 2011.
2. Ansari, R., Gholami, R., Shojaei, M.F., Mohammadi, V., Sahmani, S., Surface stress effect on the vibrational response of circular nanoplates with various edge supports. J. Appl. Mech. 80, 021021, 2013.
3. Asemi, S.R., Farajpour, A., Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium. Curr. Appl. Phys. 14, pp.814-832, 2014.
4. Asemi, S.R., Farajpour, A., Vibration characteristics of double piezoelectric nanoplate systems. Micro. Nano. Lett.9, pp.280-285, 2014.
5. Assadi, A., Farshi, B., Vibration characteristics of circular nanoplates. J. Appl. Phys. 108, 074312, 2010.
6. Assadi, A., Farshi, B., Alinia-Ziazi A., Size dependent dynamic analysis of nanoplates. J. Appl. Phys. 107, 124310, 2010.
7. Assadi, A., Farshi, B., Size dependent stability analysis of circular ultrathin films in elastic medium with consideration of surface energies. Physica E. 43, pp.1111-1117, 2011.
8. Cammarata, R.C., Surface and interface stress effects in thin films. Prog. Surf. Sci. 46, pp.1-38, 1994.
9. Chakraverty, S., Vibration of Plates. Taylor & Francis, 2008.
10. Chen, T., Chiu, M.S., Weng, C.N., Derivation of the generalized Young-Laplace equation of curved interface in nanoscaled solids. J. Appl. Phys. 100, 074308, 2006.
11. Chen, T., Chiu, M.S., Effects of higher-order interface stresses on the elastic states of two-dimensional composites. Mech. Mater. 43, pp.212-221, 2011.
12. Chen, T., Chiu, M.S., A mathematical framework of high-order surface stresses in three-dimensional configurations. Acta Mech. 225, pp.1043-1060, 2014.
13. Chiu, M.S., Chen, T., Effects of high-order surface stress on static bending behavior of nanowires. Physica E. 44, pp.714-718, 2011.
14. Chiu, M.S., Chen, T., Effects of high-order surface stress on buckling and resonance behavior of nanowires. Acta Mech. 223, pp.1473-1484, 2012.
15. Chiu, M.S., Chen, T., Bending and resonance behavior of nanowires based on Timoshenko beam theory with high-order surface stress effects. Physica E 54, pp.149-156, 2013.
16. Cuenot, S., Fretigny, C., Demoustier-Champagne, S., Nysten, B., Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B. 69, 165410, 2004.
17. Cui, Y., Zhong, Z., Wang, D., Wang, W.U., Lieber, C.M., High performance silicon nanowire field effect transistors. Nano. Lett. 3, 149, 2003.
18. Dalaei, M., Kerr, A.D., Natural vibration analysis of clamped rectangular orthotropic plates. J. Sound Vib. 189, pp.399-406, 1996.
19. Farajpour, A., Dehghany, M., Shahidi, A.R., Surface and nonlocal effects on the axisymmetric buckling of circular graphene sheets in thermal environment. Compos. Eng. Part B. 50, pp.333-343, 2013.
20. Gheshlaghi, B., Hasheminejad, S.M., Size dependent damping in axisymmetric vibrations of circular nanoplates. Thin Solid films. 537, pp.212-216, 2013.
21. Gibbs, J. W., The collected works of J. Willard Gibbs, Vol. 1, Longmans, New York, 315, 1928.
22. Gurtin, M.E., Murdoch, A.I., A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, pp.291-323, 1975.
23. Gurtin, M.E., Murdoch, A.I., Surface stress in solids. Int. J. Solids Struct. 14, pp.431-440, 1978.
24. Gurtin, M.E., Weissmüller, J., Larché, F., A general theory of curved deformable interfaces in solids at equilibrium, Philo. Mag. A 78, pp.1093-1109, 1998.
25. Hasheminejad, S.M., Gheshlaghi, B., Eigenfrequencies and quality factors of nanofilm resonators with dissipative surface stress effects. Wave motion. 50, pp.94-100, 2013.
26. He, L.H., Lim, C.W., Wu, B.S., A countinuum model for size-dependent deformation of elastic films of nano-scale thickness. Int. J. Solids Struct. 41, pp.847-857, 2004.
27. Hildebrand, F.B., Advanced calculus for applications. Prentice Hall, 1976.
28. Huang, D.W., Size-dependent response of ultra-thin films with surface effects. Int. J. Solids Struct. 45, pp.568-579, 2008.
29. Imark, C.E., Gerdemeli, I., The problem of isotropic rectangular plate with four clamped edges. Sadhana. 32, pp.181-186, 2007a.
30. Imark, C.E., Gerdemeli, I., An Exact Solution for the Deflection of a Clamped Rectangular Plate under Uniform Load. Applied Mathematical Sciences. 43, pp.2129-2137, 2007b.
31. Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X., Yu, D.P., Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys. Rev. B. 73, 235409, 2006.
32. Jomehzadeh, E., Noori, H.R., Saidi, A.R., The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E 43, pp.877-883, 2011.
33. Jones, R., Milne, B.J., Application of the extended Kantorovich method to the vibration of clamped rectangular plates. J. Sound Vib. 45, pp.309-316, 1976.
34. Kantorovich, L.V., Krylov V.I., Approximate methods of higher analysis. Interscience Publishers, New York, 1958.
35. Kerr, A.D., An extension of the Kantorovich method. Q. Appl. Math. 26, pp.219-229, 1968.
36. Kerr, A.D., Alexander, H., An application of extended Kantorovich method to the stress analysis of a clamped rectangular plate. Acta Mech. 6, pp.180-196, 1968.
37. Kerr, A.D., An extended Kantorovich method for the solution of eigenvalue problems. Int. J. Solids Struct. 5, pp.559-572, 1969.
38. Laplace, P.S., Traite de Mechanique Celste; Supplements au Livre X. Euvres Complete Vol. 4, Gauthier-Villars, Paris, 1805.
39. Landau, L.D., Lifshitz, E.M., Fluid Mechanic. Pergamon Press, Oxford, 1987.
40. Li, Z.R., Lim, C.W., He, L.H., Stress concentration around a nano-scale spherical cavity in elastic media: effect of surface stress. Int. J. Mech. Sci. 46, 1715, 2004.
41. Liu, C., Ke, L.L., Wang, Y.S., Yang, J., Kitipornchai, S., Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory, Compos. Struct. 106, pp.167-174, 2013.
42. Lu, T.Q., Zhang, W.X., Wang, T.J., The surface effect on the strain energy release rate of buckling delamination in thin film–substrate systems. Int. J. Eng. Sci. 49, pp.967-975, 2011.
43. Miller, R.E., Shenoy, V.B., Size-dependent elastic properties of nanosized structural elements. Nanotechnology. 11, pp.139-147, 2000.
44. Mohanty, P., Harrington, D.A., Ekinci, K.L., Yang, Y. T., Murphy, M. J., Roukes, M. L., Intrinsic dissipation in high-frequency micromechanical resonators. Phys. Rev. B. 66, 085416, 2002.
45. Narendar, S., Gopalakrishnan, S., Study of terahertz wave propagation properties in nanoplates with surface and small-scale effects. Int. J. Mech. Sci. 64, pp.221-231, 2012.
46. Nix, W.D., Gao, H., An atomistic interpretation of interface stress. Scr. Mater. 39, pp.1653-1661, 1998.
47. Oh, T., Popovics, J.S. Sim, S.H., Analysis of vibration for regions above rectangular delamination defects in solids. J. Sound Vib. 332, pp.1766-1776, 2013.
48. Povstenko, Y.Z., Theoretical investigation of phenomena casued by heterogeneous surface tension in solids. J. Mech. Phys. Solids. 41, pp.1499-1514, 1993.
49. Reddy, J.N., Theory and Analysis of Elastic Plates and Shells. Taylor & Francis, 2006.
50. Ru, C.Q., Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Science China 53, pp.536-544, 2010.
51. Saada, A.S., Elasticity: Theory and Applications. J. Ross Publishing, 2009.
52. Sharma, P., Ganti, S., Bhate, N., Effect of`surfaces on the size-dependent elastic state of nano-inhomogeneities. Appl. Phys. Lett. 82, pp.535-537, 2003.
53. Shenoy, V.B., Size-dependent rigidities of nanosized torsional elements. Int. J. Solids Struct. 39, pp.4039-4052, 2002.
54. Shuttleworth, R., The surface tension of solids. Proc. Phys. Soc. A. 63, pp.444-457, 1950.
55. Sun, C.T., Zhang, H., Size-dependent elastic moduli of platelike nanomaterials. J. Appl. Phys. 93, 1212, 2003.
56. Taylor, R.L., Govindjee, S., Solution of clamped rectangular plate problems. Commun. Numer. Meth. Engng. 20, pp.757-765, 2004.
57. Timoshenko, S.P., Gere, J.M., Theory of Elastic Stability. McGraw-Hill, New York, 1961.
58. Timoshenko, S.P., Woinowsky-Krieger S., Theory of plates and shells. McGraw-hill, New York, 1959.
59. Tsiatas, G.C., A new Kirchhoff plate model based on a modified couple stress theory, Int. J. Solids Struct. 46, pp.2757-2764, 2009.
60. Ugural, A.C., Stress in Plates and Shells. McGraw-Hill, New York, 1999.
61. Wang, K.F., Wang, B.L., A finite element model for the bending and vibration of nonscale plates with surface effect. Finite Elem. Anal. Design. 74, pp.22-29, 2013.
62. Weng, C.N., Chen, T., General interface conditions in surface elasticity of nanoscaled solids in general curvilinear coordinates. J. Mech. 26, pp.81-86, 2010.
63. Wu, G., Ji, H., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M.F., Chakraborty, A.K., Majumdar, A., Origin of nanomechanical cantilever motion generated from biomolecular interactions. Proc. Natl. Acad. Sci. USA 98, 1560, 2001.
64. Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W., Stipe, B.C., Rugar, D., Quality factors in micron- and submicron-thick Cantilevers. J. Microelectromech. Syst. 9, 117, 2000.
65. Yang, F., Size-dependent effective modulus of elastic composite materials: spherical nanocavities at dilute concentrations. J. Appl. Phys. 95, pp.3516-3520, 2004.
66. Young, T., An essay on the cohesion of fluid. Philos. T. R. Soc. Lond. 95, pp.65-87, 1805.
67. Zhang, L.L., Liu, J.X., Fang, X.Q., Nie, G.Q., Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates. Eur. J. Mech. A-Solid, 46, pp.22-29, 2014.
68. Zhang, L.L., Liu, J.X., Fang, X.Q., Nie, G.Q., Size-dependent dispersion characteristics in piezoelectric nanoplates with surface effects. Physical E 57, 169-174, 2014.
69. 邱明聖, 固體介面效應之探討, 國立成功大學土木工程研究所碩士論文, 2006.
70. 邱明聖, 高階表面力於奈米尺度材料或結構的一些力學課題, 國立成功大學土木工程研究所博士論文, 2013.
71. 許昆中, 三維高階介面應力在結構力學基礎課題之探討, 2012.