| 研究生: |
鄭易修 Cheng, I-Hsiu |
|---|---|
| 論文名稱: |
以共價合成單體以製作模版高分子對膽紅素之電化學感測分析 Synthesis of functional monomer via covalent bondeing for the fabrication of imprinted polymer electrode for the electrochemical sensing of bilirubin |
| 指導教授: |
許梅娟
Syu, Mei-Jywan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 膽紅素 、分子模版高分子 、電化學感測 |
| 外文關鍵詞: | bilirubin, imprinted polymer, electrochemical |
| 相關次數: | 點閱:79 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膽紅素為血紅蛋白降解之產物,正常人每日可以生成 250 ~ 350 mg 的膽紅素,而醫學檢測中,總膽紅素的濃度的標準值為 0.2 ~ 1.5 mg/dL,而直接膽紅素的標準值小於 0.4 mg/dL,利用兩者之間的差值為間接性膽紅素的濃度,並藉以膽紅素濃度的判斷是否肝機能出現異常,而人體內總膽紅素濃度若大於 2 mg/dL 則會出現黃疸症狀。醫學上的檢測重氮法檢測總膽紅素含量,而以氧化法檢測直接膽紅素含量,方法較為費時且不方便。因應生物感測器微小化的發展,利用對膽紅素分子具特異性結合之高分子薄膜,並同時利用電化學感測的方式來偵測膽紅素濃度。
製備對膽紅素分子模版高分子的材料選用上,乃是以 MAA、histidine (His) 自行合成單體 MAA-His,搭配交聯劑 EGDMA (ethylene glycol dimethylacrylate) 進行自由基加成聚合反應,並與模版分子膽紅素產互補作用力,於高分子結構中留下具有模印效果的辨識性孔洞。本研究亦探討不同單體與模版分子之間的作用、預聚合液體積的影響以及不同電極基材之應用,並利用 SEM、potentiostat 分析 MIP、NIP 薄膜之表面構形及感測訊號之影響。
依據不同的電化學感測條件所對應之結果分析,poly((MAA-His)-co-EGDMA) 電極的靈敏度為 2.96 (μA/cm2)/(mg/dL),模印因子為 5.879 ± 0.305,偵測線性範圍在膽紅素濃度 3 mg/dL 以下,對膽紅素與對應膽綠素的選擇性為 1.75 ± 0.076。研究數據顯示模板高分子可與電化學電流式結合偵測膽紅素。
Imprinting of bilirubin, a significant biomarker for hyperbilirubia, was accomplished by the co-polymerization of a synthesized monomer, MAA-His with EGDMA crosslinker. MAA-His was first proposed in this work and was prepared by coupling to achieve the formation of covalent bond between methacrylic acid (MAA) and histidine (His). Normally, to achieve a precise control on the formation of specific binding cavity site for the absorption of bilirubin, a large proportion of EGDMA was applied. Heated polymerization was used in the following experiments because of its rapid and easy implementation. The pre-polymerization solution containing bilirubin as the template was dropped and spread uniformly onto the Au surface. After the accomplishment of polymerization, proper porogen was applied to extract the imbedded bilirubin templates from the polymer matrix so that the binding cavity was formed in the matrix. The imprinting effect from different amounts of pre-polymerization solution was under investigation. Imprinting effect from the addition of MWCNTs into the pre-polymerization solution was also discussed. Sensitivity as well as selectivity of the fabricated imprinted polymer/Au toward bilirubin was obtained. The electrochemical performance of the imprinted sensing film for the specific sensing of bilirubin was also evaluated from several aspects such as limit of detection (LOD), repeatability, stability, and clinical feasibility from serum samples.
1. Pauling, L., D. Campbell, and D. Pressman, The nature of the forces between antigen and antibody and of the precipitation reaction. Physiol. Rev, 1943. 23: p. 203–219.
2. Wulff, G., Molecular Imprinting in Cross-Linked Materials with the Aid of Molecular Templates— A Way towards Artificial Antibodies. Angewandte Chemie International Edition in English, 1995. 34(17): p. 1812-1832.
3. 楊竣翔, 以模版高分子 poly(AMPS-co-EGDMA) 螯合咪唑之電子/質子傳導方式進行對膽紅素之電化學感測. 國立成功大學化工系碩士論文, 2007.
4. Widstrand, C., et al., Molecularly Imprinted Polymers: A New Generation of Affinity Matrices. AMERICAN LABORATORY, 2006. 38(19): p. 12.
5. Li, Y., et al., Selective recognition of veterinary drugs residues by artificial antibodies designed using a computational approach. Biomaterials, 2009. 30(18): p. 3205-3211.
6. Syu, M., et al., Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly (MAA-co-EGDMA) film. Biosensors and Bioelectronics, 2006. 22(4): p. 550-557.
7. Yoshimatsu, K., et al., Uniform molecularly imprinted microspheres and nanoparticles prepared by precipitation polymerization: The control of particle size suitable for different analytical applications. Analytica Chimica Acta, 2007. 584(1): p. 112-121.
8. Syu, M., J. Deng, and Y. Nian, Towards bilirubin imprinted poly (methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of α-bilirubin. Analytica Chimica Acta, 2004. 504(1): p. 167-177.
9. Song, X.L., J.T. Wang, and J. Zhu, Effect of Porogenic Solvent on Selective Performance of Molecularly Imprinted Polymer for Quercetin. Materials Research-Ibero-American Journal of Materials, 2009. 12(3): p. 299-304.
10. Wu, L., et al., Theoretical and experimental study of nicotinamide molecularly imprinted polymers with different porogens. Analytica Chimica Acta, 2005. 549(1-2): p. 39-44.
11. Yu, C. and K. Mosbach, Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers. J. Org. Chem, 1997. 62(12): p. 4057-4064.
12. Mayes, A. and K. Mosbach, Molecularly imprinted polymers: useful materials for analytical chemistry? Trends in Analytical Chemistry, 1997. 16(6): p. 321-332.
13. Wuff, G. and A. Sarhan, The use of polymers with enzyme-analogous structures for the resolution of racemate. Journal of the Angewandte Chemie International Edition, 1972. 11(3): p. 341-345.
14. Zhang, M.L., et al., Preparation and Evaluation of Core-Shell Resveratrol Molecularly Imprinted Microspheres. Chinese Journal of Analytical Chemistry. 38(1): p. 129-132.
15. Pardieu, E., et al., Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Analytica Chimica Acta, 2009. 649(2): p. 236-245.
16. Yan, H. and K. Row, Characteristic and synthetic approach of molecularly imprinted polymer. Int. J. Mol. Sci, 2006. 7: p. 155-178.
17. Vadgama, P. and P. Crump, Biosensors: recent trends. A review. The Analyst, 1992. 117(11): p. 1657-1670.
18. Turkewitsch, P., et al., Fluorescent functional recognition sites through molecular imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP. Anal. Chem, 1998. 70(10): p. 2025-2030.
19. Homola, J., Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry, 2003. 377(3): p. 528-539.
20. Marx, K., Quartz Crystal Microbalance: A Useful Tool for Studying Thin Polymer Films and Complex Biomolecular Systems at the Solution- Surface Interface. Biomacromolecules, 2003. 4(5): p. 1099-1120.
21. Wu, A. and M. Syu, Synthesis of bilirubin imprinted polymer thin film for the continuous detection of bilirubin in an MIP/QCM/FIA system. Biosensors and Bioelectronics, 2006. 21(12): p. 2345-2353.
22. Piletsky, S.A. and A.P.F. Turner, Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis, 2002. 14(5): p. 317-323.
23. Blanco-Lopez, M.C., et al., Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes. Analytical and Bioanalytical Chemistry, 2003. 377(2): p. 257-261.
24. Okuno, H., et al., Characterization of overoxidized polypyrrole colloids imprinted with L-lactate and their application to enantioseparation of amino acids. Anal. Chem, 2002. 74(16): p. 4184-4190.
25. Chen, P., et al., Detection of uric acid based on multi-walled carbon nanotubes polymerized with a layer of molecularly imprinted PMAA. Sensors and Actuators B: Chemical, 2009.
26. Yu, J.C.C. and E.P.C. Lai, Molecularly imprinted polypyrrole modified carbon nanotubes on stainless steel frit for selective micro solid phase pre-concentration of ochratoxin A. Reactive & Functional Polymers, 2006. 66(7): p. 702-711.
27. Kan, X.W., et al., Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. Journal of Physical Chemistry C, 2008. 112(13): p. 4849-4854.
28. Du, D., et al., Recognition of dimethoate carried by bi-layer electrodeposition of silver nanoparticles and imprinted poly-o-phenylenediamine. Electrochimica Acta, 2008. 53(22): p. 6589-6595.
29. Wu, B., et al., Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosensors and Bioelectronics, 2007. 22(12): p. 2854-2860.
30. DA, L. and M. AF, Molecular mechanisms of phototherapy for neonatal jaundice. Accounts of Chemical Research, 1984. 17: p. 417-424.
31. Kamisako, T., et al., Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. Journal of Gastroenterology, 2000. 35(9): p. 659-664.
32. Bonnett, R., et al., The structure of bilirubin. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1978: p. 249-268.
33. Hutchinson, D., B. Johnson, and A. Knell, Tautomerism and hydrogen bonding in bilirubin. Biochemical Journal, 1971. 123(3): p. 483.
34. Nichol, A. and D. Morell, Tautomerism and hydrogen bonding in bilirubin and biliverdin. Biochimica et Biophysica Acta (BBA)-General Subjects, 1969. 177(3): p. 599-609.
35. Rand, R. and A. Pasqua, A new diazo method for the determination of bilirubin. Clinical Chemistry, 1962. 8(6): p. 570.
36. Procedure, A., Bilirubin Jendrassik-Grof FS.
37. Murao, S. and N. Tanaka, A New Enzyme" Bilirubin Oxidase" Produced by Myrothecium verrucaria MT-1. Agricultural and Biological Chemistry, 1981. 45(10): p. 2383-2384.
38. Osawa, S., et al., An assay for separating and quantifying four bilirubin fractions in untreated human serum using isocratic high-performance liquid chromatography. Clinica Chimica Acta, 2006. 366(1-2): p. 146-155.
39. Van Norman, J. and R. Szentirmay, Chemistry of bilirubin and biliverdin in N, N-dimethylformamide. Analytical Chemistry, 1974. 46(11): p. 1456-1464.
40. Moussa, F., et al., Electrochemical oxidation of bilirubin and biliverdin in dimethyl sulfoxide. Analytical Chemistry, 1988. 60(11): p. 1179-1185.
41. 邱琮傑, 以分子模版材料製備之電極進行對膽紅素感測之探討. 國立成功大學化工系碩士論文, 2006.
42. 石家銘, 以分子模版 poly(AMPS-con-EGDMA) 結合奈米碳管修飾電極進行對膽紅素之電化學感測. 國立成功大學化工系碩士論文, 2008.
校內:2027-06-01公開