| 研究生: |
邱育暐 Chiu, Yu-Wei |
|---|---|
| 論文名稱: |
煉鋼製程廢熱利用及熱傳增強技術研究與電腦輔助設計軟體之開發 The Research of Waste Heat Utilization, Heat Transfer Enhancement Technique and the Development of Computer-Aided Design Software in Steel making Process |
| 指導教授: |
張錦裕
Jang, Jiin-Yuh |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 廢熱回收 、管內插入物 、燒結礦 、感應加熱 |
| 外文關鍵詞: | waste heat utilization, tube inserts, sinter, induction heating |
| 相關次數: | 點閱:138 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以數值方法搭配各項實驗的數據,分別探討了煉鋼製程中復熱器及燒結礦冷卻機之熱回收過程與雙金屬料管之感應加熱過程的三維熱液動分析。
在復熱器管內插入物部分,本文以紊流的流動模式,研究在不同流速(3~18m/s)下管內之流埸分佈,並且使用一字片、一字片打洞與不同螺旋角度的螺旋片插入物,探討不同形式的管內插入物對管壁溫度分佈及熱傳和壓降的影響。由研究結果可以發現,在使用一字片插入物的情形下,隨著雷諾數的增加,管內的熱傳係數和壓降比裸管分別提高了7%-16%和100%-170%。使用一字片打洞的管內插入物之後,管內的熱傳係數和壓降比裸管分別提高了13%-28%和140%-220%。而在使用三種不同角度的螺旋片管內插入物之後,管內的熱傳係數和壓降比裸管分別提高了13%-61%和150%-370%。另外,若採用螺絲片管內插入物,在使用同樣的風扇功率和產生相同熱傳量的條件下,其熱傳面積可比裸管減少約18%-28%。
在燒結礦冷卻過程的熱回收分析部份,本文以暫態數值模擬配合實驗的方式,徹底的分析燒結礦冷卻之熱流場現象。本研究以流體通過ㄧ個充滿球形粒子(particles)的packed beds來模擬燒結礦內部複雜且呈不規則分佈的流場,找出溫度與壓力隨著時間變化的情形,並以共軛熱傳來求解流體對固體(fluid-to-particles)和固體本身(particles)內部的熱傳現象,求出燒結礦體以及流體的出口溫度。另外,在本文中探討了不同的入口風速 (Vin=0.5m/s-2.0m/s)、礦體粒度(D=50mm、70mm and 100mm)以及孔隙率(Φ=0.4, 0.5)對整體熱傳的影響,歸納後可得熱傳因子Nu和摩擦因子f與雷諾數Re之關係式,利用此式之熱傳和壓降係數所得到的溫度與實驗作比較,誤差分別在3.6%和8.7%以內。
在感應加熱分析方面,本文利用電磁學、熱傳學等相關學理,依照實際感應加熱的裝置,建立了合適的電磁場與溫度場的模擬模型,結合數值分析的方法來分析雙金屬料管的感應加熱製程中的三維溫度場變化。本文針對磁通密度、磁位能、電場強度和感應電流等電磁感應特性做探討,並討論加熱工件的物理特性對電磁感應加熱結果的影響。在溫度模擬的結果方面,和中鋼公司所提供實驗數據做比較,其內外壁溫度表現和數值模擬的溫度變化之相對誤差約為15%。
本研究中亦利用數值模擬所得到熱傳係數和壓降係數與雷諾數的關係式,使用Visual Basic語言,分別針對復熱器、燒結礦冷卻機以及感應加熱製程的分析和設計,撰寫了三套電腦輔助設計程式。軟體中使用了交談式介面,分別讓使用者輸入復熱器、燒結礦冷卻機和感應加熱製程之各項進口、初始以及操作條件,經過軟體的計算,可以得到相對應的各項性能數據,對設計和測試復熱器與燒結礦冷卻機以及掌握感應加熱製程的操作條件方面有極大的助益。
Three-dimensional Numerical and experimental analyses for steel making process were carried out to study thermal-hydraulic characteristics of air flow inside a circular tube and the sinter bed during cooling process. Thr basic electro-magnetic and heat transfer theories were introduced to simulate the electro-magnetic and temperature fields in a steel hollow cylinder during the induction heating process.
Three kinds of tube inserts, including longitudinal strip inserts (both with and without holes) and twisted-tape inserts with three different twisted angles (α=15.3o, 24.4o and 34.3o) have been investigated for different inlet frontal velocity ranging from 3 to 18 m/s. Conjugate convective heat transfer in the flow field and heat conduction in the tube inserts are considered also. It was found that the heat transfer coefficient and the pressure drop in the tubes with the longitudinal strip inserts (without hole) were 7-16% and 100-170% greater than those of plain tubes without inserts. When the longitudinal strip inserts with holes were used, the heat transfer coefficient and the pressure drop were 13-28% and 140-220%, respectively, higher than those of plain tubes. The heat transfer coefficient and the pressure drop of the tubes with twisted-tape inserts were 13-61% and 150-370%, respectively, higher than those of plain tubes. Furthermore, it was found that the reduction ratio in the heat transfer area of the tube of approximately 18-28% may be obtained if the twisted-tape tube inserts are used.
Three-dimensional turbulent, transient fluid flow and heat transfer analysis over a sinter bed during a cooling process are studied experimentally and numerically. The sinter bed is modeled as a packed bed of spheres and the conjugate convective heat transfer in the flow field and heat conduction in the spheres are considered also. The effects of two different porosity (Φ=0.4, 0.5) and three different particle sphere diameters (D=50mm, 70mm and 100mm) are investigated in detail .The numerical results are in good agreement within 15-20% with the experimental data. The equations for the Colburn factor j and friction factor f are obtained from the numerical results when the steady-state situation is reached, and the equations of Nu and f gives an error from 3.6% to 8.7% over the entire range of Re.
In the analysis of bi-metal induction heating process, basic electro-magnetic and heat transfer theories were introduced to simulate the electro-magnetic and temperature fields in a steel hollow cylinder subjected to step-wise induction from outside. Three different sizes of the workpieces were investigated and compared. The numerical results agreed with the experimental data within 15%. The numerical simulation of three different air gaps (5 mm, 15 mm and 25 mm) between the coil and the workpiece were also performed and compared.
The CAD software was also developed in this study. It could help the engineers to design and analize the recuperator, sinter cooling and induction heating in steeling making process.
Chapter 1
1. R. Koch, Druckverlust und Waermeuebergang bei Verwirbeiter, Verein Deutscher Ingenieure Forschungsheft. Series B, Vol.24, No. 469, 1- 44, 1958
2. L. B. Evans, S. W. Churchill, The effect of Axial Promoters on Heat Transfer and Pressure Drop inside a Tube, Chemical Engineering Progress Symposium, Series 59, Vol.41, pp.36-46, 1963
3. D. G. Thomas, Enhancement of Forced Convection mass Transfer Coefficient Using Detached Turbulence Promoters, Industrial Engineering and Chemical Process Design Developments, Vol.6, pp.385-390, 1967
4. L. Xie, R. Gu, X. Zhang, A study of Optimum Inserts for Enhancing Convective Heat Transfer of High Viscosity Fluid in a Tube, Multiphase Flow and Heat Transfer, Second International Symposium, Vol.1, X-J. T. N. Chen, Veziroglu, and C. L. Tien (Eds)., Hemisphere Publishing Corp., New York, pp.649-656, 1992
5. W. H. Emerson, Heat Transfer in a Duct in Regions of Separated Flow, Chemical Engineering Process , Vol.62, No.7, pp.77-85, 1966
6. W. E. Hilding, C. H. Coogan, Heat Transfer and Pressure Drop in Internally Finned tubes, ASME Symposium on Air Cooled Heat Exchangers, pp.57-84, 1964
7. A. C. Trupp, A. C. Y. Lau, Fully Developed Laminar Heat Transfer in Circular Sector Ducts with Isothermal Walls”, Journal of Heat Transfer, Vol.106, pp.467-469, 1984
8. A. W. Date, J. R. Singham, Numerical Prediction of Friction and Heat Transfer Characteristics of Fully Developed Laminar Flow in Tubes Containing Twisted Tapes, Mechanical Engineering No94, Vol.9, pp.54-62, 1972
9. A. W. Date, Prediction of Fully Developed Flow in a Tube Containing a Twisted Tape, International Journal of Heat and Mass Transfer, Vol.17, pp.845-859, 1974
10. W. J. Marner, A. E. Bergles, Augmentation of Highly Viscous Laminar Tube-side Heat Transfer by Means of a Twisted-Tape Insert and an Internally Finned Tube, Advances in Enhanced Heat Transfer, ASME Symposium, HTD, Vol.43, 19-28, 1985
11. R. Smithberg, F. Landis, Friction and Forced Convection Heat Transfer Characteristics in Tubes with Twisted Tape Swirl Generators”, Journal of Heat Transfer, Vol.87, pp.39-49, 1964
12. R. Thorsen, F. Landis, Friction and Heat Transfer Characteristics in Turbulent Swirl Flow Subjected to Large Transverse Temperature Gradients, Journal of Heat Transfer, Vol.90, pp.87-89, 1968
13. R. F. Lopina, A. E. Bergles, Heat Transfer and Pressure Drop in Tape-Generated Swirl Flow of Single-Phase Water, Journal of Heat Transfer, Vol.91, pp.434-442, 1969
14. R. M. Manglik, A. E. Bergles, Heat Transfer and Pressure Drop Correlations for Twisted-Tape Inserts in Isothermal Tubes : Part I-Laminar Flows in ASME Symposium on Enhanced Heat Transfer edited by Pate M. B. and Jensen M. K., HTD, Vol.202, 89-98, 1992
15. T. S. Wang, Y. S. Chen, Unified Navier-Stokes flow field and Performance Analysis of Liquid Rocket Engines, AIAA Journal, Vol. 9(5), pp.678-685, 1993
16. A. Liakopoulos, Explicit Representation of the Complete Velocity Profile in a Turbulent Boundary Layer, AIAA Journal, Vol.22, pp.844-846, 1984
17. CFD-ACE(U), CFD Research corporation, Alabama, USA, 2003
18. R. K. Shah, Heat Exchanger Basic Design Method, in S. Kakac, R. K. Shah, and A. E. Bergles (eds.), Low Reynolds Number Flow Heat Exchangers, pp. 21-72, Hemisphere, New York, 1983
19. D. Q. Kern, Process Heat Transfer, McGraw-Hill, 1950
20. S. J. Kline, F. A. McClintock, Describing Uncertainties Single-Sample Experiment, ASME Mechanical Engineering, Vol.75, pp.3-8, 1953
21. R. L. Webb, Principles of enhanced Heat Transfer, John Wiley & Sons, New York, 1994
Chapter 2
1. A. C. Caputo, G. Cardarelli, and P. M. Pelagagge, “Analysis of Heat Recovery in Gas-Solid Moving Beds Using a Simulation Approach”, Applied Thermal Engineering, Vol.16, No.1, pp.89-99, 1996
2. P. M. Pelagagge, A. C. Caputo, G. Cardarelli, “Optimization Criteria of Heat Recovery from Solid Beds”, Applied Thermal Engineering, Vol.17, No.1, pp.57-64, 1997a)
3. P. M. Pelagagge, A. C. Caputo, G. Cardarelli, “Comparing Heat Recovery Schemes in Solid Beds Cooling”, Applied Thermal Engineering, Vol.17, pp.1045-1054 (1997b
4. T. Minoura, Y. Sakamoto, K. Hashimoto, and S. Toyama, “ Heat Transfer and Fluid Flow Analysis of Sinter Coolers with Considerations of Size Segregation and Initial Temperature Distribution”, Heat Transfer Japan Res., Vol. 19(6),pp. 537-555 , 1990
5. H. A. Jakobsen, Lindborg, and V. Handeland, “A Numerical Study of the Interactions between Viscous Flow, Transport and Kinetics in Fixed Bed Reactors”, Comput. Chem. Eng., vol.26, pp.333, 2002
6. O. Bey, O., and G. Eigenberger, “Fluid through Catalyst Filled Tubes”, Chem. Eng. Sci., Vol.52, pp.1365, 1977
7. Giese, M., K. Rottschafer, and D. Vortmeyer, “Measured and Modeled Superficial Flow Profiles in Packed Beds with Liquid Flow“, AIChE J., Vol.44, pp.484, 1998
8. M. T. Dalman, J. H. Merkin, C. McGreavy, “Fluid Flow and Heat Transfer past Two Spheres in a Cylindrical Tube”, Comp. Fluid, Vol.14, pp.267-281, 1986
9. B. Lloyd, R. Boehm, “Flow and Heat Transfer around a Linear Array of Spheres”, Numer. Heat Trans., Part A, Vol.26, pp.237-252, 1994
10. H. P. A. Calis, J. Nijenhuis, B. C. Paikert, F. M. Dautzenberg, and C. M. Van den Bleek, “CFD Modeling and Experimental Validation of Pressure Drop and Flow Profile in a Novel Structured Catalytic Reactor Packing“, Chem. Eng. Sci, Vol.56, pp.1713, 2001
11. C. F. Petre, F. Larachi, I. Iliuta, and B, P. A. Grandjean, “Pressure Drop through Structured Packings: Breakdown into the Contributing Mechanisms by CFD Modeling”, Chem. Eng. Sci, Vol.58, pp.163 (2003)
12. J. Tobis, “Modeling of the Pressure Drop in the Packing of Complex Geometry”,Ind. Eng. Chem. Res., Vol.41, pp.2252-2259, 2002
13. P. Magnico, “Hydrodynamic and transport properties of packed beds in small tube-to-sphere diameter ratio: pore scale simulation using an Eulerian and a Lagrangian approach”, Chem. Eng. Sci., Vol.58, pp.5005-5024, 2003
14. S. J. P. Romkes, E. Dautzenberg,C. M. van den Bleek, et al., “ CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio“, Chem. Eng. J., Vol.96, pp.3-13, 2003
15. G. Alvarez, P. E. Bournet, D. Flick, “Two-Dimensional Simulation of Turbulent Flow and Transfer through Stacked Spheres”, Int. J. Heat Mass Transfer, Vol.46, pp.2459-2469, 2003
16. H. Inaba, T. Fukuda, “Transient Heat Transfer Behaviors in Cylinderical Porous Beds at Relatively Large Reynolds Numbers”, Warme Und Stoffubertragung -Thermo and Fluid Dynamics, Vol. 18, pp. 109-116, 1984
17. H. Inaba, T. Fukuda, “Transient Heat Transfer Behavior of Heat Removal from a Cylindrical Heat Storage Vessel Packed with Spherical Porous Particles”, Warme Und Stoffubertragung-Thermo and Fluid Dynamics, Vol. 22, pp. 325-333, 1988
18. N. Wakao, S. Kaguei, I. T. Funazkr, “Effect of Fluid Dispersion Coefficient on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds”, Chem. Eng. Sci., Vol.34, pp.325-336, 1979
19. M. Nijemeisland, A. G. Dixon, “Comparison of CFD Simulations to Experiment for Convective Heat Transfer in a Gas-Solid Fixed Bed”, Chem. Eng. J., Vol.82, pp.231-246, 2001
20. T. S. Wang, Y. S. Chen, Unified Navier-Stokes flow field and Performance Analysis of Liquid Rocket Engines, AIAA Journal, Vol.9(5), pp.678-685, 1993
21. A. Liakopoulos, Explicit Representation of the Complete Velocity Profile in a Turbulent Boundary Layer, AIAA Journal, Vol.22, pp.844-846, 1984
Chapter 3
1. Lavers, J.D., “Numerical Solution Methods for Electroheating Problems”, IEEE Transactions on Magnetics. Vol. 19, No. 6, November 1983
2. Aniserowicz K., Skorek A., Cossette. C., and Zaremba, M.B., “A New Concept for Finite Element Simulation of Induction Heating of Steel Cylinders”, IEEE Transactions On Industry Applications, Vol. 33, No. 4, 1997.
3. Salon S. J. and Schneider J. M., “A Hybrid Finite Element-Boundary Integral Formulation of the Eddy Current Problem”, IEEE Transactions on Magnetics, Vol. 18 No. 2, pp.462, 1982
4. Fawzi T. F., Ali K. F. and Bruke P. E., “Boundary Integral Equations Analysis of Induction Devices with Rotational Symmetry”, IEEE Transactions on Magnetics, Vol. 19 Vol. 1, 1983
5. Preston T. W., “An Economic Solution for 3-D Coupled Electromagnetic and Thermal Eddy Current Problems”, IEEE Transactions on Magnetics, Vol. 28, No 2, March 1992
6. Nerg J. and Partanen J., “A Simplified FEM Based Calculation Model for 3-D Induction Heating Problems Using Surface Impedance Formulations”, IEEE Transactions on Magnetics, Vol. 37, No. 5, 2001
7. H. K. Jung, C. G. Kang, Y. H. Moon, J. Master. Eng. Performance 9 (1) 12, 2000
8. Urbanek P., Skorek A., and Zaremba M.B., “Magnetic Flux and Temperature Analysis in Induction Heated Steel Cylinder”, IEEE Transactions on Magnetics, Vol. 30, No. 5, 1994.
9. Bukanin V., Dughiero F., Lupi, S., Nemkov V., and Siega P., “3D-FEM Simulation of transverse-flux induction heaters”, IEEE Transactions On Magnetics, Vol. 31, No. 3, 1995.
10. Sadeghipour K. and Dopkin J. A., “A Computer Aided Finite Element / Experimental Analysis of Induction Heating Process of Steel”, Computers In Industry, Vol. 28, pp. 195-205, 1995.
11. Chaboudez C., Clain D., Glardon, R., Mari D., Rappaz, J., and Swierkosz M., “Numerical Modeling in Induction Heating for Axisymmetric Geometries”, IEEE Transactions on Magnetics, Vol. 33, No. 1, 1997.
12. Kang C.G., Seo P.K., and Jung H.K., “Numerical Analysis by New Proposed Coil Design Method in Induction Heating Process for Semi-Solid Forming and Its Experimental Verification with Globalization Evaluation, Materials Science and Engineering”, A341, pp, 121-138, 2003.
13. Chen S. C., Peng, H. S., Chang J. A. and Jong W. R., “Simulations and verifications of induction heating on a mold plate”, Int. Comm. Heat Mass Transfer, Vol. 31, No. 7, pp. 971-980, 2004.
14. Wang Z., Yang X., Wang Y. and Yan W., “Eddy Current and Temperature Field Computation in Transverse Flux Induction Heating Equipment for Galvanizing”, IEEE Transactions On Magnetics, Vol. 37, No 5, September 2001
15. Jang S. M., Cho S. K., Lee S. H., Cho H. W. and Park H. C., “Thermal Analysis of Induction Heating Roll With Heat Pipes” , IEEE Transactions On Magnetics, Vol. 39, No 5, September 2003
16. Muhlbauer A., Muiznieks A. and Lebmann H. J., “The Calculation of 3D High-Frequency Electromagnetic Fields During Induction Heating Using the BEM ”, IEEE Transactions On Magnetics, Vol. 29, No 2, Marchr 2003
17. Masse P. and Brevilies T., “A Finite Element Prediction Correction Scheme for Magneto—Thermal Coupled Problem During Curie Transition”, IEEE Transactions On Magnetics, Vol. 21, No 5, September 1985
18. Preis K., “A Contribution to Eddy Current Calculations in Plan and Axisymmetric Multiconductor Systems ”, IEEE Transactions On Magnetics, Vol. Mag-19 , No 6, November 1983
19. Davies E. J., “Conduction and induction heating”, Peter Peregrinus Ltd., London, United Kingdom, 1990
20. Pantaker S. V., “A calculation procedure for two dimensional elliptic problem”, Numeric Heat Transfer 4:409-426, 1981
校內:2012-07-21公開