| 研究生: |
張家綺 Chang, Chia-Chi |
|---|---|
| 論文名稱: |
以碳鏈長度為16-16-12之三碳鏈離子對雙親分子製備之陰陽離子液胞的物理特性 Physical properties of catanionic vesicles prepared from a triple-chained ion pair amphiphile with alkyl chain lengths of 16-16-12 |
| 指導教授: |
張鑑祥
Chang, Chien-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 陰陽離子液胞 、離子對雙親分子 、稀釋效應 、膽固醇效應 |
| 外文關鍵詞: | catanionic vesicle, dilution effect, cholesterol effect |
| 相關次數: | 點閱:201 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陰陽離子液胞(catanionic vesicle)是一種新型的傳輸載體,利用陽離子型界面活性劑及陰離子型界面活性劑合成出類似脂質結構的離子對雙親分子,經過適當製程可製備出陰陽離子型液胞。本研究以雙碳鏈陽離子型界面活性劑dihexadecyldimethylammonium bromide(DHDAB)及單碳鏈陰離子型界面活性劑sodium dodecylsulfate(SDS)所形成之三碳鏈離子對雙親分子DHDA-DS為主材料,並添加膽固醇以強制性製程製備出陰陽離子液胞,探討稀釋及膽固醇的添加對於液胞物理特性及雙層膜流動性的影響。
實驗結果顯示,純成分DHDA-DS可形成帶正電之穩定液胞,且穩定天數可超過一年。而在製備液胞的過程中,水溶性較高之DS-會溶出雙層膜導致液胞帶正電。稀釋後液胞之界面電位下降,而以螢光偏極化法分析液胞雙層膜的流動性,顯示稀釋後液胞雙層膜流動性降低,兩者皆不利於液胞穩定。但當稀釋至0.033 mM(60倍)後,液胞仍可穩定超過半年,表示三碳鏈DHDA-DS液胞不易受到稀釋所造成的不穩定效應所影響。
添加膽固醇後,液胞之界面電位下降,顯示膽固醇可抑制DS-溶出雙層膜的行為。以螢光偏極化法及紅外光譜法分析雙層膜的流動性可知添加膽固醇後,靠近液胞雙層膜核心位置之碳鏈的流動性下降,但整體碳鏈的流動性上升,顯示膽固醇對於雙層膜的不同區段有不同的效應。位於膽固醇的固醇環周圍之DHDA-DS碳氫鏈分子傾向更規則的排列,稱為規則效應,而在DHDA-DS之碳氫鏈的前段及尾段部分為不規則效應,因此整體而言,膽固醇結構誘導出的不規則效應大於規則效應,使整體疏水碳鏈區域流動性上升。
In this study, the formation behavior of catanionic vesicles from a triple-chained ion pair amphiphile (IPA) was investigated by size, zeta potential, fluorescence polarization and infrared spectroscopy analyses. The IPA, dihexadecyldimethylammonium-dodecylsulfate (DHDA-DS), was obtained as precipitate from mixed aqueous solutions of anionic surfactant, sodium dodecylsulfate, and cationic surfactant, dihexadecyldimethylammonium bromide. Stable catanionic vesicles with a lifetime more than 360-day could be fabricated from DHDA-DS without additives. Whether the zeta potential of the catanionic vesicles decreased or the membrane rigidity of the catanionic vesicles increased, a detrimental effect on the physical stability of the catanionic vesicles would result. However, the vesicle size analysis indicated the high physical stability of the DHDA-DS catanionic vesicles even at a high dilution ratio. Fluorescence polarization and infrared spectroscopy showed that the addition of cholesterol into the DHDA-DS vesicles could have different effects on the vesicular membrane fluidity in different regions of the bilayer membranes, which was attributed to the difference in the extent of disordering and ordering effects induced by cholesterol.
Ang, I. A., “含對稱雙十二碳鏈離子對雙親分子及帶負電脂質之陰陽離子液胞的物理穩定性及維他命E醋酸酯包覆效率,” 國立成功大學化學工程學系碩士論文, 2011.
Aragones, J. L., MacDowell, L. G. and Vega, C., “Dielectric Constant of Ices and Water:A Lesson about Water Interactions,” Journal of Physical Chemistry A, 115, 23, 5745-5758, 2011.
Bach, D. and Wachtel, E., “Phospholipid/cholesterol model membranes: formation of cholesterol crystallites,” Biochimica et Biophysica Acta, 1610, 2, 187-197, 2003.
Bhattacharya, S., De, S. M. and Subramanian, M., “Synthesis and vesicle formation from hybrid bolaphile/amphiphile ion-pairs. Evidence of membrane property modulation by molecular design,” Journal of Organic Chemistry, 63, 22, 7640-7651, 1998.
Bhattacharya, S. and Haldar, S., “Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage,” Biochimica et Biophysica Acta-Biomembranes, 1467, 1, 39-53, 2000.
Blandamer, M. J., Briggs, B., Cullis, P. M., Rawlings, B. J. and Engberts, J., “Vesicle - cholesterol interactions: Effects of added cholesterol on gel-to-liquid crystal transitions in a phospholipid membrane and five dialkyl-based vesicles as monitored using DSC,” Physical Chemistry Chemical Physics, 5, 23, 5309-5312, 2003.
Blanzat, M., Perez, E., Rico-Lattes, I., Prome, D., Prome, J. C. and Lattes, A., “New catanionic glycolipids. 1. Synthesis, characterization, and biological activity of double - chain and gemini catanionic analogues of galactosylceramide (gal beta(1)cer),” Langmuir, 15, 19, 6163-6169, 1999.
Borochov, N., Wachtel, E. J. and Bach, D., “Phase - behavior of mixtures of cholesterol and saturated phosphatidylglycerols,” Chemistry and Physics of Lipids, 76, 1, 85-92, 1995.
Brasher, L. L., Herrington, K. L. and Kaler, E. W., “Electrostatic effects on the phase - behavior of aqueous cetyltrimethylammonium bromide and sodium octyl sulfate mixtures with added sodium-bromide,” Langmuir, 11, 11, 4267-4277, 1995.
Campbell, R. B., Balasubramanian, S. V. and Straubinger, R. M., “Phospholipid - cationic lipid interactions: influences on membrane and vesicle properties,” Biochimica et Biophysica Acta - Biomembranes, 1512, 1, 27-39, 2001.
Carmona - Ribeiro, A. M., Ortis, F., Schumacher, R. I. and Armelin, M. C. S., “Interactions between cationic vesicles and cultured mammalian cells,” Langmuir, 13, 8, 2215-2218, 1997.
Carrion, F. J., Delamaza, A. and Parra, J. L., “The influence of ionic-strength and lipid bilayer charge on the stability of liposomes,” Journal of Colloid and Interface Science, 164, 1, 78-87, 1994.
Chien, C. L., Yeh, S. J., Yang, Y. M., Chang, C. H. and Maa, J. R., “Formation and encapsulation of catanionic vesicles,” Journal of the Chinese Colloid and Interface Society, 24, 31-45, 2002.
Chiruvolu, S., Israelachvili, J. N., Naranjo, E., Xu, Z., Zasadzinski, J. A., Kaler, E. W. and Herrington, K. L., “Measurement of forces between spontaneous vesicle-forming bilayers,” Langmuir, 11, 11, 4256-4266, 1995.
Choosakoonkriang, S., Wiethoff, C. M., Anchordoquy, T. J., Koe, G. S., Smith, J. G. and Middaugh, C. R., “Infrared spectroscopic characterization of the interaction of cationic lipids with plasmid DNA,” The Journal of Biological Chemistry, 276, 11, 8037-8043, 2001.
Chung, M. H. and Chung, Y. C., “Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers,” Colloids and Surfaces B - Biointerfaces, 24, 2, 111-121, 2002.
Chung, M. H., Park, M. J., Chun, B. C. and Chung, Y. C., “Encapsulation and permeation properties of the polymerized ion pair amphiphile vesicle that has an additional carboxyl group on anionic chain,” Colloids and Surfaces B - Biointerfaces, 28, 2-3, 83-93, 2003.
Chung, M. H., Park, C., Chun, B. C. and Chung, Y. C., “Polymerized ion pair amphiphile vesicles with pH-sensitive transformation and controlled release property,” Colloids and Surfaces B - Biointerfaces, 34, 3, 179-184, 2004.
Eastman, S. J., Siegel, C., Tousignant, J., Smith, A. E., Cheng, S. H. and Scheule, R. K., “Biophysical characterization of cationic lipid: DNA complexes,” Biochimica et Biophysica Acta - Biomembranes, 1325, 1, 41-62, 1997.
Evans, D. F. and Wemmerström, H., “The Colloidal Domain Where Physics, Chemistry, Biology, and Technology Meet,” VCH, New York, 110-114, 1994.
Feitosa, E., Jansson, J. and Lindman, B., “The effect of chain length on the melting temperature and size of dialkyldimethylammonium bromide vesicles,” Chemistry and Physics of Lipids, 142, 1-2, 128-132, 2006.
Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M. and Danielsen, M., “Lipofection - A highly efficient, lipid-mediated DNA - transfection procedure,” Proceedings of the National Academy of Sciences of the United States of America, 84, 7413-7417, 1987.
Fischer, A., Hebrant, M. and Tondre, C., “Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl benzene sulfonate/cetyltrimethylammonium tosylate/water system,” Journal of Colloid and Interface Science, 248, 1, 163-168, 2002.
Fukuda, H., Kawata, K., Okuda, H. and Regen, S. L., “Bilayer-forming ion-pair amphiphiles from single-chain surfactants,” Journal of the American Chemical Society, 112, 4, 1635-1637, 1990.
Ghosh, S., Ghatak, C., Banerjee, C., Mandal, S., Kuchlyan, J. and Sarkar, N., “Spontaneous transition of micelle-vesicle-micelle in a mixture of cationic surfactant and anionic surfactant-like ionic liquid: a pure nonlipid small unilamellar vesicular template used for solvent and rotational relaxation study,” Langmuir, 29, 32, 10066-10076, 2013.
Gunarsa, C. A., “含雙十六碳鏈磷酸鹽之陰陽離子液胞的物理穩定性及維他命E包覆效率,” 國立成功大學化學工程學系碩士論文, 2010.
Guo W. and James A. Hamilton, “A Multinuclear Solid - state NMR Study of Phospholipid - Cholesterol Interactions. Dipalmitoylphosphatidylcholine - Cholesterol Binary System,” Biochemistry, 34, 43, 14174-14184, 1995.
Gustafsson, J., Arvidson, G., Karlsson, G. and Almgren, M., “Complexes between cationic liposomes and DNA visualized by cryo - TEM,” Biochimica et Biophysica Acta - Biomembranes, 1235, 2, 305-312, 1995.
Hac-Wydro, K., Wydro, P. and Dynarowicz-Latka, P., “Interactions between dialkyldimethylammonium bromides (DXDAB) and sterols - a monolayer study,” Journal of Colloid and Interface Science, 286, 2, 504-510, 2005.
Heimburg, T., “A model for the lipid pretransition: coupling of ripple formation with the chain - melting transition,” Biophysical Journal, 78, 3, 1154-1165, 2000.
Hirano, K., Fukuda, H. and Regen, S. L., “Polymerizable ion-paired amphiphiles,” Langmuir, 7, 6, 1045-1047, 1991.
Holmberg, K., “Handbook of applied surface and colloid chemistry, ” 2002.
Huang, J. B. and Zhao, G. X., “Formation and coexistence of the micelles and vesicles in mixed - solution of cationic and anionic surfactant,” Colloid and Polymer Science, 273, 2, 156-164, 1995.
Huebner, S., Battersby, B. J., Grimm, R. and Cevc, G., “Lipid - DNA complex formation: Reorganization and rupture of lipid vesicles in the presence of DNA as observed by cryoelectron microscopy,” Biophysical Journal, 76, 6, 3158-3166, 1999.
Israelachvili, J. N., Mitchell, D. J. and Ninham, B. W., “Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers,” Journal of the Chemical Society-Faraday Transactions Ii, 72, 1525-1568, 1976.
Jayme, M. L., Dunstan, D. E. and Gee, M. L., “Zeta potentials of gum arabic stabilised oil in water emulsions,” Food Hydrocolloids, 13, 6, 459-465, 1999.
Jubeh, T. T., Barenholz, Y. and Rubinstein, A., “Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes,” Pharmaceutical Research, 21, 3, 447-453, 2004.
Kaler, E. W., Murthy, A. K., Rodriguez, B. E. and Zasadzinski, J. A. N., “Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants,” Science, 245, 4924, 1371-1374, 1989.
Keough, K. M. W. and Davis, P. J., “Gel to liquid-crystalline phase-transitions in water dispersions of saturated mixed-acid phosphatidylcholines,” Biochemistry, 18, 8, 1453-1459, 1979.
Kida, T., Tanaka, T., Nakatsuji, Y. and Akashi, M., “Formation of micrometer-sized supramolecular assemblies with unique morphologies from triple-chain lipids with two sugar head groups,” Chemistry Letters, 35, 1, 112-113, 2006.
Knoll, W., Schmidt, G., Ibel, K. and Sackmann, E., “Small-angle neutron scattering study of lateral phase separation in dimyristoylphosphatidylcholine-cholesterol mixed membranes,” American Chemical Society, 24, 19, 5240-5246, 1985.
Kondo, Y., Uchiyama, H., Yoshino, N., Nishiyama, K. and Abe, M., “Spontaneous vesicle formation from aqueous-solutions of didodecyldimethylammonium bromide and sodium dodecyl-sulfate mixtures,” Langmuir, 11, 7, 2380-2384, 1995.
Kranenburg, M., and Smit, B., “Phase behavior of model lipid bilayers,” Journal of Physical Chemistry B, 109, 14, 6553-6563, 2005.
Kuo, A. T. and Chang, C. H., “Cholesterol-induced condensing and disordering effects on a rigid catanionic bilayer: a molecular dynamics study,” Langmuir, 30, 1, 55-62, 2014.
Ladbrooke, B. D., Williams, R. M. and Chapman, D., “Studies on lecithin-cholesterol-water interactions by differential scanning calorimetry and X-ray diffraction,” Biochimica et Biophysica Acta, 150, 3, 333-340, 1968.
Lasic, D. D., “Liposomes: from physics to applications,” Elsevier Amsterdam, New York, 265-318, 1993.
Lasic, D. D. and Papahadjopoulos, D., “Liposomes and biopolymers in drug and gene delivery,” Current Opinion in Solid State & Materials Science, 1, 3, 392-400, 1996.
Lasic, D. D., “Liposomes in gene delivery,” CRC press, New York, 67-112, 1997.
Lee, W. H., Tang, Y. L., Chiu, T. C. and Yang, Y. M., “Synthesis of ion-pair amphiphiles and calorimetric study on the gel to liquid-crystalline phase transition behavior of their bilayers,” Journal of Chemical and Engineering Data, 60, 4, 1119-1125, 2015.
Li, F., Luan, Y., Liu, X., Pang, J., Lin, G., Shao, W. and Li, Z., “Characterization and aggregation behaviors of mixed DDAB/SDS solution with and without poly(4-styrenesulfonic acid-co-maleic acid) sodium,” Journal of Dispersion Science and Technology, 32, 11, 1624-1633, 2011.
Liang, C. H. and Chou, T. H., “Effect of chain length on physicochemical properties and cytotoxicity of cationic vesicles composed of phosphatidylcholines and dialkyldimethylammonium bromides,” Chemistry and Physics of Lipids, 158, 2, 81-90, 2009.
Lopes, S., Neves, C., Eaton, P. and Gameiro, P., “Cardiolipin, a key component to mimic the E. coli bacterial membrane in model system membranes,” Biophysical Journal, 100, 3, 626-626, 2011.
Manohar, C, and Narayanan, J., “Average packing factor approach for designing micelles, vesicles and gel phases in mixed surfactant systems,” Colloids and Surfaces A-Physicochemical and Engineering Aspects, 403, 129-132, 2012.
Marsh, D., “CRC handbook of lipid bilayers,” 1990.
Massey, J. B., “Interfacial properties of phosphatidylcholine bilayers containing vitamin E derivatives,” Chemistry and Physics of Lipids, 109, 2, 157-174, 2001.
McMullen, T. P. W., Lewis, R. and McElhaney, R. N., “Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase - behavior of a homologous series of linear saturated phosphatidylcholines,” Biochemistry, 32, 2, 516-522, 1993.
McMullen, T. P. W., Lewis, R. and McElhaney, R. N., “Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes,” Biophysical Journal, 79, 4, 2056-2065, 2000.
Mel'nikova, Y. S., Mel'nikov, S. M. and Lofroth, J. E., “Physico-chemical aspects of the interaction between DNA and oppositely charged mixed liposomes,” Biophysical Chemistry, 81, 2, 125-141, 1999.
Menger, F. M., Binder, W. H. and Keiper, J. S., “Cationic surfactants with counterions of glucuronate glycosides,” Langmuir, 13, 12, 3247-3250, 1997.
Merino - Montero, S., Montero, M. T. and Hernandez - Borrell, J., “Effects of lactose permease of Escherichia coli on the anisotropy and electrostatic surface potential of liposomes,” Biophysical Chemistry, 119, 1, 101-105, 2006.
Michel, N., Fabiano, A. S., Polidori, A., Jack, R. and Pucci, B., “Determination of phase transition temperatures of lipids by light scattering,” Chemistry and Physics of Lipids, 139, 1, 11-19, 2006.
New, R. R. C., “Liposomes: a practical approach,” Oxford University Press, New York, 1-32, 1990.
Panda, A. K., Possmayer, F., Petersen, N. O., Nag, K. and Moulik, S. P., “Physico - chemical studies on mixed oppositely charged surfactants: Their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface,” Colloids and Surfaces A - Physicochemical and Engineering Aspects, 264, 1-3, 106-113, 2005.
Pebay-Peyroula, E., Dufourc, E. J. and Szabo, A. G., “Location of diphenyl-hexatriene and trimethylammoniumdiphenyl-hexatriene in dipalmitoylphosphatidylcholine bilayers by neutron diffraction,” Biophysical Chemistry, 53, 1-2, 45-46, 1994.
Riske, K. A., Nascimento, O. R., Peric, M., Bales, B. L. and Lamy-Freund, M. T., “Probing DMPG vesicle surface with a cationic aqueous soluble spin label,” Biochimica et Biophysica Acta - Biomembranes, 1418, 1, 133-146, 1999.
Segota, S. and Tezak, D., “Spontaneous formation of vesicles,” Advances in Colloid and Interface Science, 121, 1-3, 51-75, 2006.
Song, Y. K. and Liu, D. X., “Free liposomes enhance the transfection activity of DNA/lipid complexes in vivo by intravenous administration,” Biochimica et Biophysica Acta - Biomembranes, 1372, 1, 141-150, 1998.
Soussan, E., Mille, C., Blanzat, M., Bordat, P. and Rico-Lattes, I., “Sugar-derived tricatenar catanionic surfactant: synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles,” Langmuir, 24, 2326-2330, 2008.
Soussan, E., Cassel, S., Blanzat, M. and Rico-Lattes, I., “Drug delivery by soft matter: Matrix and vesicular carriers,” Angewandte Chemie-International Edition, 48, 2, 274-288, 2009.
Sternberg, B., Sorgi, F. L. and Huang, L., “New structures in complex - formation between DNA and cationic liposomes visualized by freeze - fracture electron-microscopy,” FEBS Letters, 356, 2-3, 361-366, 1994.
Subuddhi, U. and Mishra, A. K.,“Micellization of bile salts in aqueous medium: A fluorescence study,” Colloids and Surfaces B: Biointerfaces, 57, 1, 102-107, 2007.
Sumida, Y., Masuyama, A., Maekawa, H., Takasu, M., Kida, T., Nakatsuji, Y., Ikeda, I. and Nojima, M., “Stable vesicles made from new triple-chain amphiphiles: long-term stability toward leakage of the trapped substances,” Chemical Communications, 21, 2385-2386, 1998.
Sumida, Y., Masuyama, A., Takasu, M., Kida, T., Nakatsuji, Y., Ikeda, I. and Nojima, M., “Behavior of self-organized molecular assemblies composed of phosphatidylcholines and synthetic triple-chain amphiphiles in water,” Langmuir, 16, 21, 8005-8009, 2000.
Sumida, Y., Masuyama, A., Takasu, M., Kida, T., Nakatsuji, Y., Ikeda, I. and Nojima, M., “New pH-sensitive vesicles. Release control of trapped materials from the inner aqueous phase of vesicles made from triple-chain amphiphiles bearing two carboxylate groups,” Langmuir, 17, 3, 609-612, 2001.
Teixeira, C. V., Blanzat, M., Koetz, J., Rico-Lattes, I. and Brezesinski, G., “In - plane miscibility and mixed bilayer microstructure in mixtures of catanionic glycolipids and zwitterionic phospholipids,” Biochimica et Biophysica Acta - Biomembranes, 1758, 11, 1797-1808, 2006.
Tomasic, V., Stefanic, I. and Filipovic-Vincekovic, N., “Adsorption, association and precipitation in hexadecyltrimethylammonium bromide/sodium dodecyl sulfate mixtures,” Colloid and Polymer Science, 277, 2-3, 153-163, 1999.
Tondre, C. and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science, 93, 1-3, 115-134, 2001.
Vautrin, C., Zemb, T., Schneider, M. and Tanaka, M., “Balance of pH and ionic strength influences on chain melting transition in catanionic vesicles,” Journal of Physical Chemistry B, 108, 23, 7986-7991, 2004.
Vist, M. R. and Davis, J. H., “Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures:deuterium nuclear magnetic resonance and differential scanning calorimetry,” Biochemistry, 29, 2, 451-464, 1990.
Walker, S. A. and Zasadzinski, J. A., “Electrostatic control of spontaneous vesicle aggregation,” Langmuir, 13, 19, 5076-5081, 1997.
Wang, C. Z., Tang, S. H., Huang, J. B., Zhang, X. R. and Fu, H. L., “Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems,” Colloid and Polymer Science, 280, 8, 770-774, 2002.
Yang, Y. M., Wu, K. C., Huang, Z. L. and Chang, C. H., “On the stability of liposomes and catansomes in aqueous alcohol solutions,” Langmuir, 24, 5, 1695-1700, 2008.
Yokouchi, Y., Tsunoda, T., Imura, T., Yamauchi, H., Yokoyama, S., Sakai, H. and Abe, M., “Effect of adsorption of bovine serum albumin on liposomal membrane characteristics,” Colloids and Surfaces B-Biointerfaces, 20, 2, 95-103, 2001.
Yokoyama, S., Inagaki, A., Imura, T., Ohkubo, T., Tsubaki, N., Sakai, H. and Abe, M., “Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide,” Colloids and Surfaces B - Biointerfaces, 44, 4, 204-210, 2005.
Zhang, X., Jackson, J. K. and Burt, H. M., “Determination of surfactant critical micelle concentration by a novel fluorescence depolarization technique,” Journal of biochemical and biophysical methods, 31, 3-4, 145-150, 1996.
Zhang, X. R., Huang, J. B., Mao, M., Tang, S. H. and Zhu, B. Y., “From precipitation to vesicles: a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents,” Colloid and Polymer Science, 279, 12, 1245-1249, 2001.
Zheng, Z., Zhou, M., Qiao, W. and Luo, L., “Spontaneous vesicle formation in mixtures of quaternary ammonium compounds with carbamate and sodium dodecylbenzene sulfonate,” Journal of Surfactants and Detergents, 18, 1, 171-178, 2015.
Zuidam, N. J. and Barenholz, Y., “Electrostatic parameters of cationic liposomes commonly used for gene delivery as determined by 4-heptadecyl-7-hydroxycoumarin,” Biochimica et Biophysica Acta - Biomembranes, 1329, 2, 211-222, 1997.
王鈺婷, “帶負電陰陽離子液胞的物化特性及維他命E醋酸酯包覆效率—離子對雙親分子碳鏈結構的影響,” 國立成功大學化學工程學系碩士論文, 2015.
吳芷容, “利用帶正電的陰陽離子液胞做為DNA載體之可行性的研究,” 國立成功大學化學工程學系碩士論文, 2008.
吳國彰, “陰陽離子液胞穩定性及包覆/釋放行為的研究,” 國立成功大學化學工程學系碩士論文, 2006.
呂奇達, “帶正電的陰陽離子液胞與DNA之結合行為的探討,” 國立成功大學化學工程學系碩士論文, 2005.
李承軒, “帶正電陰陽離子液胞及其與DNA形成之複合物的物理穩定性,” 國立成功大學化學工程學系博士論文, 2015.
李威達, “陰陽離子型液胞組成材料之混合單分子層中分子作用的探討,” 國立成功大學化學工程學系博士論文, 2008.
李家如, “含不對稱碳鏈離子對雙親分子及帶負電脂質之陰陽離子液胞的物理穩定性及維他命E醋酸酯包覆效率,” 國立成功大學化學工程學系碩士論文, 2011.
李雅鈺, “含膽固醇之陰陽離子液胞穩定性及包覆行為的研究,” 國立成功大學化學工程學系碩士論文, 2004.
杜承霖, “白蛋白對含雙鏈陽離子型界面活性劑之陰陽離子液胞物化特性的影響,” 國立成功大學化學工程學系碩士論文, 2012.
林冠豪, “帶電的陰陽離子液胞之製備及物理穩定性研究,” 國立成功大學化學工程學系碩士論文, 2004.
林奕萍, “高轉染能力之新穎性奈米微粒設計,” 國立台灣大學醫學院生物化學暨分子生物研究所, 2003.
洪振益, “溫度效應對帶電陰陽離子液胞釋放行為的影響,” 國立成功大學化學工程學系碩士論文, 2009.
徐立銘, “陰陽離子液胞包覆行為之探討,” 國立成功大學化學工程學系碩士論文, 2002.
張維芬, “添加劑對雙十六碳鏈離子對雙親分子形成之陰陽離子液胞物化特性的影響,” 國立成功大學化學工程學系碩士論文, 2012.
陳柏瑋, “白蛋白存在下帶正電陰陽離子液胞穩定性的探討,” 國立成功大學化學工程學系碩士論文, 2007.
游文月, “共溶劑促進陰陽離子液胞自發性形成之研究,” 國立成功大學化學工程學系碩士論文, 2004.
黃鉦琳, “帶電陰陽離子液胞的形成及其膠化之研究,” 國立成功大學化學工程學系碩士論文, 2007.
葉紹任, “共溶劑對陰陽離子液胞穩定性的影響,” 國立成功大學化學工程學系碩士論文, 2003.
廖怡芬, “長碳鏈醇類添加劑對帶電陰陽離子液胞物理穩定性的影響,” 國立成功大學化學工程學系碩士論文, 2006.
蕭哿葳, “以紅外光譜法探討離子對雙親分子/添加劑之混合Langmuir單分子層中的分子排列特性:碳氫鏈對稱性的效應,” 國立成功大學化學工程學系碩士論文, 2016.
鍾依玲,“陰/陽離子液胞自發性形成之探討,” 國立成功大學化學工程學系碩士論文, 2002.
簡振龍, “陰/陽離子界面活性劑的混合增效作用之研究,” 國立成功大學化學工程學系碩士論文, 2000.
蘇于晴, 未發表的研究成果, 國立成功大學化學工程學系, 2016.
校內:2021-07-01公開