| 研究生: |
陳神祐 Chen, Shen-Yu |
|---|---|
| 論文名稱: |
半無限運輸問題和二次無限Lp問題的演算法 Algorithms for semi-infinite transportation problems and quadratic infinite Lp problems |
| 指導教授: |
吳順益
Wu, Soon-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 半無限二次規劃 、割平面法 、離散法 、有限線性規劃 、無限線性規劃 、半無限線性規劃 、有限二次規劃 、無限二次規劃 、半無限運輸問題 |
| 外文關鍵詞: | semi-infinite transportation problem, cutting plane method, finite quadratic programming, discretization method, semi-infinite linear programming, Finite linear programming, infinite linear programming, infinite quadratic programming, semi-infinite quadratic programming |
| 相關次數: | 點閱:199 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在第一章我先介紹有關有限線性規劃的一些基本性質。接著我將這些基本性質推廣到無限和半無限線性規劃。進一步我比較這些基本性質在有限線性規劃和無限和半無限線性規劃的差異。同時我給一些實際問題並將他們表示成無限和半無限線性規劃問題。最後,我討論有限二次規劃、無限二次規劃和半無限二次規劃。
在第二章我考慮半無限運輸問題。我發展一個演算法來處理這類型的半無限運輸問題。這個演算法是一個對偶單形法。我的重要結果是證明這個演算法是收斂。最後,我用我的演算法來處理一些例子。
在第三章我研究無限二次規劃問題。我考慮的變數要落在Lp空間,而且要求變數定義在一個緊緻區間同時要有上界和下界。我發展兩個演算法來解決這類型問題同時也證明這兩個演算法是收斂的。最後,我應用我的演算法來解一些數值例子。
在第四章我對半無限運輸問題和無限二次規劃問題作一些結論。
In Chapter 1, first, we introduce some basic properties for finite linear pro-
gramming. Then we extend these basic properties to infinite and semi-infinite
linear programming. Furthermore, we compare the differences of these ba-
sic properties between finite linear programming and infinite and semi-infinite
linear programming. We also give some natural problems and express them
as infinite and semi-infinite linear programming. In the final section, we dis-
cuss finite quadratic programming, infinite quadratic programming, and semi-
infinite quadratic programming.
We consider semi-infinite transportation problems in Chapter 2. We de-
velop an algorithm for this class of semi-infinite transportation problems. The
algorithm is a dual simplex method which is induced from the algorithm in An-
derson and Nash [3] for a special class of semi-infinite transportation problems.
The most important aspect of our result is that we can prove the convergence
result for the algorithm. Finally, we implement some examples to illustrate
our algorithm.
We study infinite dimensional quadratic programming problems of an in-
tegral type in Chapter 3. The decision variable is taken in the Lp space.
In this chapter the decision variable is required to have a lower
bound and an upper bound on a compact interval. Two numerical algorithms
are proposed for solving these problems, and the convergence properties of the
proposed algorithms are given. Some numerical examples are also given to
implement the proposed algorithms.
In Chapter 4, we make some conclusions about semi-infinite transportation
problems and infinite quadratic programming problems.
[1] E. J. Anderson and A. S. Lewis, An extension of the simplex algorithm
for semi-infinite linear programming, Mathematical Programming, Vol.44,
pp.247-269, 1989.
[2] E. J. Anderson, A. S. Lewis, and S. Y. Wu, The capacity problem, Optimization,
Vol.20, pp.725-742, 1989.
[3] E. J. Anderson and P. Nash, Linear programming in infinite-dimensional
spaces, John Wiley and Sons, Chichester, 1987.
[4] E. J. Anderson and A. Philpott, Duality and an algorithm for a class
of continuous transportation problems, Mathematics of Operations Research,
Vol.9, pp.222-231 1984.
[5] M. S. Bazarra, H. D. Sherali, and C. M. Shetty, Nonlinear programming:
Theory and algorithms, John Wiley and Sons, 2006.
[6] D. P. Bertsekas, Nonlinear programming, Athena Scientific, 1995.
[7] J. M. Borwein, Semi-infinite programming duality: How special is it? in:
A. V. Fiacco and K. O. Kortanek (Eds.), Semi-infinite Programming and
Applications, Springer, Berlin, pp.10-36, 1983.
[8] A. Charnes, W. W. Cooper, and K. O. Kortanek, Duality in semi-infinite
programs and some works of Haar and Caratheodory, Management Sci.,
Vol.9, pp.209-228, 1963.
[9] G. Choquet, Theory of capacities, Annales de l’Institut Fourier, Vol.5,
pp.131-295, 1954.
[10] I. D. Coope and G. A. Watson, A projected Lagrangian algorithm for
semi-infinite programming, Mathematical Programming, Vol.32, pp.337-
356, 1985.
[11] H. W. Corley and S. D. Roberts, A partitioning problem with applications
in regional design, Operations Res., Vol.20, pp.1010-1019, 1972.
[12] T. F. Coleman and L. A. Hulbert, A global and superlinearly convergent
algorithm for convex quadratic programs with simple bounds, Siam J.
Optimization, Vol.33, pp.298-321, 1993.
[13] Y. H. Dai and R. Fletcher, New algorithms for singlely linear constraint
quadratic programs subject to lower and upper bounds, Mathematical
Programming, Vol.106, pp.403-421, 2006.
[14] C. Dang and L. Xu, A barrier function method for the nonconvex
quadratic programming problem with box constaints, Journal of Optimization,
Vol.18, pp.165-188, 2000.
[15] G. B. Dantzig and M. N. Thapa, Linear programming 1: introduction,
Springer, New York, 1997.
[16] R. J. Duffin, Infinite programs, in: H. W. Kuhn and A. W. Tucker
(Eds.), Linear inequalities and Related Systems, Princeton University
Press, Princeton, N.J., pp.157-170, 1956.
[17] R. J. Duffin, R. G. Jeroslow, and L. A. Karlovitz, Duality in semi-infinite
linear programming, in: A. V. Fiacco and K. O. Kortanek (Eds.), Semiinfinite
Programming and Applications, Springer, Berlin, pp.50-62, 1983.
[18] R. J. Duffin and L. A. Karlovitz, An infinite linear program with a duality
gap, Management Sci., Vol.12, pp.122-134, 1965.
[19] S. C. Fang, C. J. Lin, and S. Y. Wu, On solving convex quadratic semiinfinite
programming problems, Optimization, Vol.31, pp.107-125, 1994.
[20] S. C. Fang, C. J. Lin, and S. Y. Wu, Solving quadratic semi-infinite
programming problems by using relaxed cutting plane scheme, Journal of
Computational and Applied Mathematics, Vol.129, pp.89-104, 2001.
[21] S. C. Fang and S. C. Puthenpura, Linear optimization and extensions:
Theory and algorithms, Prentice Hall, Eaglewood Cliffs, New Jersey, 1993.
[22] S. C. Fang and S. Y. Wu, An inexact approach to solving linear semiinfinite
programming problems, Optimization, Vol.28, pp.291-299, 1994.
[23] M. C. Ferris and A. B. Philpott, An interior point algorithm for semiinfinite
linear programming, Mathematical Programming, Vol.43, pp.257-
276, 1989.
[24] B. Fugled, On the theory of potentials in locally compact spaces, Acta
Mathematica, Vol.103, pp.139-215, 1960.
[25] C. A. Floudas and V. Visweswaran, Quadratic optimization, in:R. Horst
and P. M. Pardalos (Eds.) Handbooks of Global Optimization, Kluwer
Academics Publishers, London, pp.217-269, 1995.
[26] K. Glashoff, Duality theory of semi-infinite programming, in: R. Hettich(
Ed.), Semi-infinite Programming, Springer, Berlin, pp.1-16, 1979.
[27] K. Glashoff and S. A. Gustafson, Linear optimization and approximation,
Springer, Berlin, 1983.
[28] M. A. Goberna and V. Jornet, Geometric fundamentals of the simplex
method in semi-infinite programming, OR Spektrum, Vol.10, pp.145-152,
1988.
[29] M. A. Goberna and M. A. Lopez, Linear semi-infinite optimization, Wiley,
New York, 1998.
[30] M. A. Goberna and M. A. Lopez, Linear semi-infinite programming theory:
An updated survey, European Journal of Operational Research,
Vol.143, pp.390-405, 2002.
[31] P. R. Gribik, A central cutting plane algorithm for semi-infinite programming
problems, in: R. Hettich(Ed.), Semi-infinite Programming, Springer,
Berlin, pp.66-82, 1979.
[32] S. A. Gustafson, On the computational solution of a class of generalized
moment problems, SIAM Journal on Numerical Analysis, Vol.7, pp.343-
357, 1970.
[33] S. A. Gustafson, On numerical analysis in semi-infinite programming, in:
R. Hettich(Ed.), Semi-infinite Programming, Springer, Berlin, pp.51-65,
1979.
[34] S. A. Gustafson, On semi-infinite programming in numerical analysis,
in: R. Hettich(Ed.), Semi-infinite Programming, Springer, Berlin, pp.137-
153, 1979.
[35] S. A. Gustafson, A three phase algorithm for semi-infinite programms, in:
A. V. Fiacco and K. O. Kortanek (Eds.), Semi-infinite Programming and
Applications, Springer, Berlin, pp.138-157, 1983.
[36] S. A. Gustafson and K. O. Kortanek, Numerical treatment of a class of
semi-infinite programming problems, Naval Res. Logist. Quart., Vol.20,
pp.477-504, 1973.
[37] S. A. Gustafson and K. O. Kortanek, Semi-infinite programming and
applications, in: A. Bachem et al.(Eds.), Mahtematical Programming: the
state of the art, Springer, Berlin, pp.132-157, 1983.
[38] O. Hernandez-Lerma and J. B. Lasserre, Approximation schemes for infinite
linear programs, SIAM J. OPTIM., Vol.8, pp.973-988, 1998.
[39] R. Hettich, A comparison of numerical methods for semi-infinite programming,
in: R. Hettich(Ed.), Semi-infinite Programming, Springer, Berlin,
pp.112-125, 1979.
[40] R. Hettich, A review of numerical methods for semi-infinite optimization,
in: A. V. Fiacco and K. O. Kortanek(Eds.), Semi-infinite Programming
and Applications, Springer, Berlin, pp.158-178, 1983.
[41] R. Hettich, An implementation of a discretization method for semi-infinite
programming, Mathematical Programming, Vol.34, pp.354-361, 1986.
[42] R. Hettich and G. Gramlich, A note on an implementation of a method for
quadratic semi-infinite programming, Mathematical Programming, Vol.46,
pp.249-254, 1990.
[43] R. Hettich and K. O. Kortanek, Semi-infinite programming: theory,
method and applications, SIAM Review, Vol.35, pp.380-429, 1993.
[44] R. B. Holmes, Geometric functional analysis and its applications,
Springer, New York, 1975.
[45] H. Hu, A one phase algorithm for semi-infinite linear programming, Mathematical
Programming, Vol.46, pp.88-103, 1990.
[46] S. Ito, Y. Liu, T. J. Shiu, K. L. Teo, and S. Y. Wu, A numerical approach
to infinite-dimensional linear programming in L1 spaces(submitted).
[47] S. Ito, Y. Liu, and K. L. Teo, An approximation approach to non-strictly
convex quadratic semi-infinite programming, Journal of Global Optimization,
Vol.30, pp.195-206, 2004.
[48] L. V. Kantorovich, On the translocation of masses, Doklady Akad. Nauk.
SSSR, Vol.37, pp.199-201, 1942.
[49] L. V. Kantorovich and G. S. Rubinstein, On a functional space and certain
extremum problems, Doklady Akad. Nauk. SSSR, Vol.115, pp.1058-1061,
1957.
[50] D. F. Karney, Duality gaps in semi-infinite linear programming- an approximation
problem, Mathematical Programming, Vol.20, pp.129-143,
1981.
[51] K. O. Kortanek and M. Yamasaki, Equalities in transportation problems
and characterizations of optimal solutions, Naval Res. Logist. Quart.
Vol.27, pp.589-595, 1980.
[52] K. O. Kortanek and M. Yamasaki, Semi-infinite transportation problems,
J. Math. Anal. Appl., Vol.88, pp.555-565, 1982.
[53] K. O. Kortanek and M. Yamasaki, Discrete infinite transportation problems,
Discrete applied Mathematics, Vol.58, pp.19-33, 1995.
[54] W. Krabs, Optimization and approximation, Wiley, Chichester, 1979.
[55] K. S. Kretschmer, Programmes in paired spaces, Canad. J. Math., Vol.13,
pp.221-238, 1961.
[56] H. C. Lai and S. Y. Wu, On linear semi-infinite programming: an algorithm,
Numer. Funct. Anal. Optim., Vol.13, pp.287-304, 1992.
[57] H. C. Lai and S. Y.Wu, Extremal points and optimal solutions for general
capacity problems, Mathematical Programming, Vol.54, pp.87-113, 1992.
[58] T. Leon, S. S. Sanmatias, and E. Vecher, On the numerical trearment of
linearly constrained semi-infinite optimization problems, European Journal
of Operational Research, Vol.121, pp.78-91, 2000.
[59] T. Leon and E. Vecher, An optimality test for semi-infinite linear programming,
Optimization, Vol.26, pp.51-60, 1992.
[60] V. L. Levin, On the mass transfer problem, Soviet Math. Dokl.,Vol.16,
pp.1349-1353, 1975.
[61] V. L. Levin and A. A. Milyutin, The problems of mass transfer with a
discontinuous cost function and a mass statement of the duality problem
for convex extremal problems, Russ. Math. Surveys, Vol.34, pp.1-78, 1978.
[62] A. S. Lewis, Extreme points and purification algorithms in general linear
programming, in: E. J. Anderson and A. B. Philpott(Eds.), Infinite
Programming, Springer, Berlin, pp.123-135, 1985.
[63] A. S. Lewis, Extreme points of infinite transportation problems, Proc.
10th symposium on Operations Research, 1985.
[64] L. Li and K. K. Lai, A fuzzy approach to the multiobjective tranportation
problem, Computer and Operations Research, Vol.27, pp.43-57, 2000.
[65] C. J. Lin, S. C. Fang, and S. Y. Wu, An unconstrained convex programming
approach to linear semi-infinite programming, SIAM J. Optim.,
Vol.8, pp.443-456, 1998.
[66] M. A. Lopez, M. A. Goberna, and S. Y. Wu, Separation by hyperplanes:
a linear semi-infinite programming approach, in: M. A. Goberna and
M. A. Lopez(Eds.), Semi-Infinite Programming: Recent Advance, Kluwer
Academic Publishers, pp.255-269, 2001.
[67] M. A. Lopez and G. Still, Semi-infinite programming, to appear in European
Journal of Operational Research, 2007.
[68] T. J. Lowe and A. P. Hurter, The generalized market area problems,
Management Sci., Vol.22, pp.1105-1115, 1976.
[69] D. G. Luenberger, Optimization by vector space methods, Wiley, New
York, 1969.
[70] D. G. Luenberger, Linear and nonlinear programming, Addison-Wesley,
Massachusetts, 1984.
[71] Z. Q. Luo, C. Roos, and T. Terlaky, Compexity analysis of logarithmic
barrier decomposition methods for semi-infinite linear programming, Applied
Numerical Mathematics, Vol.29, pp.379-394, 1999.
[72] S. J. Li, X. Q. Yang, K. L. Teo, and S. Y. Wu, A solution method for combined
semi-infinite and semi-definite programming, ANZIAM J., Vol.45,
pp.477-494, 2004.
[73] S. J. Li, S. Y. Wu, X. Q. Yang, and K. L. Teo, A relaxed cutting plane
method for semi-infinite semi-definite programming, J. Comput. Appl.
Math., Vol.196, pp.459-473, 2006.
[74] C. Ling, Q. L. Qi, G. L. Zhou, and S. Y. Wu, Global convergence of a
robust smoothing SQP method for semi-infinite programming, J. Optim.
Theory Appl., Vol.129, pp.147-164, 2006.
[75] Y. Liu, K. L. Teo, and S. Y. Wu, A new quadratic semi-infinite programming
algorithm based on dual parametrization, J. Global Optim., Vol.29,
pp.401-413, 2004.
[76] Y. Liu and K. L. Teo, A Dual parametrization algorithm for linear
quadratic simi-infinite programming problems, Nonlinear Analysis,
Vol.47, pp.5636-5646, 2001.
[77] Y. Liu and K. L. Teo, An adaptive dual parametrization algorithm for
quadratic semi-infinite programming problems, Journal of Global Optimization,
Vol.24, pp.205-217, 2002.
[78] Y. Liu, K. L. Teo, and S. Ito, A dual parametrization approach to
linear-quadratic semi-infinite programming problems, Optimization Methods
and Software, Vol.10, pp.471-495, 1999.
[79] K. G. Murty, Linear programming, John Wiley, New York, 1983.
[80] T. Nakamura and M. Yamasaki, Sufficient conditions for duality theorems
in infinite linear programming problems, Hiroshima Math. J., Vol.9,
pp.323-334, 1979.
[81] J. Nocedal and S. J.Wright, Numerical optimization, Springer, New York,
1999.
[82] M. Ohtsuka, A generalization of duality theorem in the theory of linear
programming, Journal of Science, Hiroshima University Series A-I Vol.30,
pp.31-39, 1966.
[83] M. Ohtsuka, Generalized capacity and duality theorem in linear programming,
Journal of Science, Hiroshima University Series A-I Vol.30, pp.45-
56, 1966.
[84] C. Van de Panne, Methods for linear and quadratic programming, North-
Holland Publishing Company, Amsterdam, 1975.
[85] E. Polak, Optimization: Algorithms and consistent approximation,
Springer, New York, 1997.
[86] J. Ch. Pomeral, Openness, closedness and duality in Banach spaces with
application to continuous linear programming, in: E. J. Anderson and A.
B. Philpott(Eds.), Infinite Programming, Springer, Berlin, pp.1-15, 1985.
[87] R. Reemtsen and S. Gorner, Numerical methods for semi-infinite programming:
a survey, in: R. Reemtsen and J. J. Ruckmann(Eds.), Semi-infinite
Programming, Kluwer Academic, Netherlands, pp.195-275, 1998.
[88] R. T. Rockafellar, Convex analysis, Princeton University Press, Priceton,
NJ., 1970.
[89] K. Roleff, A stable multiple exchange algorithm for linear SIP, in: R. Hettich(
Ed.), Semi-infinite Programming, Springer, Berlin, pp.83-96, 1979.
[90] H. L. Royden, Real analysis, Prentice-Hall, New Jersey, 1988.
[91] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973.
[92] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1977.
[93] E. W. Sachs , Semi-infinite programming in control, in: R. Reemtsen
and J. J. Ruckmann(Eds.) Semi-Infinite Programming, Kluwer Academic,
Netherlands, pp.389-411, 1998.
[94] A. Shapiro, On duality theory of convex semi-infinite programming, Optimization,
Vol.54, pp.535-543, 2005.
[95] R. Tichatschke and V. Nebeling, A cutting-plane method for quadratic
semi-infinite programming problems, Optimization, Vol.19, pp.803-817,
1988.
[96] M. J. Todd, Solving the generalized market area problem, Management
Sci., Vol.24, pp.1549- 1554, 1977.
[97] M. I. Todorov, Generic existence and uniqueness of the solution to linear
semi-infinite optimization problems, Numer. Funct. Anal. Optim., Vol.8,
pp.541-556, 1986.
[98] R. J. Vanderbei, Extreme optics and the research of earth-like planets, to
appear in Mathematical Programming, 2007.
[99] D. Vandenbussche and G. L. Nemhauser, A branch-and-cut algorithm
for nonconvex quadratic programs with box constraints, Math. Program.,
Vol.102, pp.559-575, 2005.
[100] Z. Wan, S. Y. Wu, and K. L. Teo, Some properties on quadratic infinite
programs of integral type, Applied Mathematics Letters, Vol.20, pp.676-
680, 2007.
[101] G. A. Watson, Lagrangian methods for semi-infinite programming problems,
in: E. J. Anderson and A. B. Philpott(Eds.), Infinite Programming,
Springer, Berlin, pp.90-107, 1985.
[102] S. Y. Wu, Linear programming in measure spaces, Ph. D. Dissertation,
Cambridge University, 1985.
[103] S. Y.Wu, The general capacity problem, in: W. Oettli et al.(Eds.), Methods
of Operations Research, Oelgeschlager, Gunn and Hain, Cambridge,
MA, pp.329-344, 1985.
[104] S. Y. Wu, Extremal points and an algorithm for a class of continuous
transportation problems, Journal of Information and Optimization Sciences,
Vol.13, pp.97-106, 1992.
[105] S. Y. Wu, A cutting plane approach to solving quadratic infinite programs
on measure spaces, Journal of Global Optimization, Vol.21, pp.67-
87, 2001.
[106] S. Y. Wu, S. Fang, and C. J. Lin, A dual affine scaling based algorithm
for solving linear semi-infinite programming problems, in: D. Z. Du and J.
Sun(Eds.), Advances in Optimization and Approximation, Kluwer, Dordrecht,
pp.217-233, 1994.
[107] S. Y. Wu, S. Fang, and C. J. Lin, Relaxed cutting plane method solving
linear semi-infinite programming problems, Journal of Optimization
Theory and Applications, Vol.99, pp.759-779, 1998.
[108] S. Y. Wu, S. Fang, and C. J. Lin, Analytic center based cutting plane
method for linear semi-infinite programming, in: M. A. Goberna and M.
A. Lopez(Eds.), Semi-Infinite Programming: Recent Advance, Kluwer,
Dordrecht, pp.221-233, 2001.
[109] S. Y. Wu, S. Fang, and C. J. Lin, Solving general capacity problem by
relaxed cutting plane approach, Annals of Operations Research, Vol.103,
pp.193-211, 2001.
[110] S. Y. Wu, S. Fang, C. J. Lin, and E. K. Yang, Implementation of an
inexact approach to solving linear semi-infinite programming problems,
J. Comp. Appl. Math., Vol.61, pp.87-103, 1995.
[111] S. Y. Wu, S. Fang, and R. L. Sheu, A primal-dual infeasible interior
point algorithm for linear semi-infinite programming problems, Computers
Math. Appl., Vol.29, pp.7-18, 1995.
[112] S. Y. Wu and C. F. Wen , Duality theorems and algorithms for linear
programming in measure spaces, J. Global Optim., Vol.30, pp.207-233,
2004.
[113] S. Y. Wu and C. F. Wen, An approximation approach for linear programming
in measure space, Optimization and control with applications,
pp.331-350, Appl. Optim., 96, Springer, New York, 2005.
[114] M. Yamasaki, On a capacity problem raised in connection with linear
programming, Journal of Science, Hiroshima University Series A-I Vol.30,
pp.57-73, 1966.
[115] M. Yamasaki, Duality theorems in mathematical programming and their
applications, Journal of Science, Hiroshima University Series A-I Vol.32,
pp.331-356, 1968.
[116] W. I. Zangwill, Nonlinear programming: A unified approach, Prentice-
Hall, New Jersey, 1969.