簡易檢索 / 詳目顯示

研究生: 蔡家鳴
Tasi, Gu-ming
論文名稱: 電化學沉積法製備優選方向氧化鋅薄膜之研究
The study in electrochemical deposition of preferential orientation ZnO thin films
指導教授: 黃守仁
Whang, Thou-jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 102
中文關鍵詞: 錯合劑氧化鋅電化學沉積法
外文關鍵詞: electrochemical deposition, zinc oxide, complexing agent
相關次數: 點閱:84下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從以往的文獻中得知半導體化合物大部分都是由真空乾式的技術來製備,而電化學沉積法為一種半導體合成的新興方法。II-VI 族化合物為具有直接能隙或是間接能隙的半導體材料,在此利用電沉積法製備半導體材料,討論不同製備參數,得到薄膜最佳化。
    本實驗中主要利用電沉積法製備氧化鋅薄膜,透過不同的製備參數,例如電鍍液濃度,電位,錯合劑等條件在ITO 玻璃上鍍製薄膜。實驗中,當硝酸鋅濃度低於0.1 M 時,氧化鋅以 (002) 面為優選位相,當濃度提高,其他晶面將會出現,當硝酸鋅為0.06 M,(002) 晶面成長最佳,分別加入乳酸和檸檬酸,乳酸結構上有一羧基團而檸檬酸有三個羧基團,單芽基的乳酸有助於氧化鋅成長,對照於三芽基的檸檬酸,則必須在極低的濃度下才能製備氧化鋅薄膜,但 (002) 面成長卻沒有添加乳酸來的穩定而金屬鋅也會電沉積到基板上。乳酸的添加除了能夠有效加強 (002) 面的成長,也使穿透率達80~95%以及改善薄膜的表面平整性。PL 分析也發現 (002) 面成長越好,紫光放射的強度越強,氧化鋅薄膜的藍光放射會隨電位增加提高訊號強度。

    Based on the literature, we know that semiconductor compound is produced by the technology of vacuum and dry and electrochemical deposition is a kind of novel method to compose semiconductor. The II-VI compound is considered as the semiconductor material of direct band gap or indirect band gap. Hereby we use electrochemical deposition to produce semiconductor material and discuss about different parameter of procedure to get the best film.
    In this experiment, we use electrochemical deposition to produce zinc oxide film through different procedure parameter to electrodeposit on ITO glasses, ex. concentration of solution, potential, complexing agent, etc. When the concentration of zinc nitrite is lower than 0.1 M, (002) is the prior face for zinc oxide. As the concentration raise, the other kinds of crystal face would appear. Among those data, (002) grows the best when the concentration of zinc nitrite is 0.06 M. We add lactic acid and citric acid respectively; there is an carboxyl group on the lactic acid and three carboxyl groups on the citric acid. The monodentate of lactic acid helps the growth of zinc oxide, compared to the tridentate of citric acid which can only produce zinc oxide film under very low concentration, but the growth of (002) face is not that stable as adding the lactic acid and zinc will electrodeposit to substrate. Adding lactic acid can not only strengthen the growth of (002) face effectively but also can let the transmittance reach 80~95% and improve the surface smoothing of the thin film. The PL analysis also discover that the better the (002) face grow, the stronger the violet emission and the blue emission of the thin film of zinc oxide will raise the signal strength as the electric potential increase.

    中文摘要 ................................................................................................. IV 英文摘要 .................................................................................................. V 目錄 ........................................................................................................ VII 圖次 ......................................................................................................... XI 表次 ....................................................................................................... XVI 第一章 緒論 ............................................................................................ 1 1-1 前言 ............................................................................................ 1 1-2 研究動機 .................................................................................... 4 第二章 基礎理論 .................................................................................... 5 2-1 透明導電薄膜 ............................................................................ 5 2-1-1 光學性質 .......................................................................... 6 2-1-2 電學性質 .......................................................................... 8 2-2 電化學理論 .............................................................................. 11 2-2-1 循環伏安法 (Cyclic Voltammery) ................................. 12 2-2-2 定電流電解法 (Chronopotentiometry) .......................... 12 2-2-3 定電位電解法 (Chronoamperometry) ........................... 13 2-2-4 電沉積的優缺點 ............................................................ 13 2-3 氧化鋅介紹 .............................................................................. 14 2-3-1 晶體成長模型 ................................................................ 15 2-3-2 氧化鋅的表面穩定性 .................................................... 16 2-4 II-VI 族半導體薄膜製備方式 .................................................. 18 2-4-1 化學氣相沉積法 (Chemical Vapor Deposition,CVD) 18 2-4-2 脈衝式雷射蒸鍍 (Pulsed Laser Deposition,PLD) ...... 19 2-4-3 濺鍍法 (Sputtering) ....................................................... 20 2-4-4 原子層磊晶法 (Atomic Layer Deposition,ALD) ....... 20 2-4-5 化學浴沉積法 (Chemical Bath Deposition,CBD) ...... 21 2-4-6 電化學沉積法 (Electrochemical deposition,ED) ....... 22 第三章 實驗 .......................................................................................... 23 3-1 藥品 .......................................................................................... 23 3-2 儀器設備 .................................................................................. 23 3-3 實驗儀器 .................................................................................. 25 3-4 實驗流程圖 .............................................................................. 26 3-5 實驗步驟 .................................................................................. 27 3-6 氧化鋅電化學反應機制 ........................................................... 29 3-7 薄膜性質測試 .......................................................................... 30 3-7-1 XRD 繞射分析 ............................................................... 30 3-7-2 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 分析 ............................................................................... 30 3-7-3 原子力顯微鏡 (Atomic Force Microscopy,AFM) 分析 ........................................................................................... 30 3-7-4 螢光光譜儀 .................................................................... 31 3-7-5 紫外光-可見光吸收光譜儀 ........................................... 31 第四章 結果與討論 .............................................................................. 32 4-1 不加錯合劑下電鍍氧化鋅薄膜 ............................................... 32 4-1-1 硝酸鋅循環伏安法分析 ................................................ 32 4-1-2 XRD 及結構表面分析 .................................................... 33 4-1-3 UV-vis 測量 ..................................................................... 45 4-1-4 能隙計算 ........................................................................ 51 4-1-5 光致螢光光譜 ................................................................ 56 4-2 加入乳酸錯合劑電沉積氧化鋅薄膜 ....................................... 61 4-2-1 XRD 及結構表面分析 .................................................... 61 4-2-2 UV-vis 測量 ..................................................................... 72 4-2-3 能隙計算 ........................................................................ 77 4-2-4 光致螢光光譜 ................................................................ 80 4-3 加入檸檬酸錯合劑電沉積氧化鋅薄膜 ................................... 83 4-3-1 XRD 及結構表面分析 .................................................... 83 4-2-3 UV-vis 測量 .................................................................... 92 4-2-3 光致螢光光譜 ................................................................ 96 第五章 結論 .......................................................................................... 98 參考文獻 .............................................................................................. 100

    1. 楊明輝,工業材料, 2001, 179, 174.
    2. B. G. Lewis and D. C. Paine, MRS Bulletin, 2000, 25, 22.
    3. H. M. Pathan, C. D. Lokhande, Applied Surface Science, 2005, 245,234.
    4. E. Tzvetkova , N. Stratieva, M. Ganchev, I. Tomov, K. Ivanova, K. Kochev, Thin Solid Films, 1997, 31, 101.
    5. Sudo, Endo, Irie, Journal of Applied Physics, 1993, 32, 1562.
    6. H. Saloniemi, M. Kemell, M. Ritala, M Leskela, Journal of the Electrochemical Society, 2000, 482, 148.
    7. P. J. Sebastian, M. E. Calixto, R. N. Bhattacharya, Rommel Noufi, Solar Energy Materials & Solar Cells, 1999, 59, 125.
    8. A. Ennaoui, S. Siebentritt, M. Ch. Lux-Steiner, W. Riedl, F. Karg, Solar Energy Mater. & Solar Cells, 2001, 67, 31.
    9. 陳璟鋒,國立成功大學材料科學及工程學系碩士論文, 2004.
    10. T. J. Coutts, D. L. Young, X. Li, MRS Bulletin, 2000, 25, 58.
    11. E. Burstein, Phys. Rev. 1954. 93, 632.
    12. T. S. Moss, Proceedings of the Physical Society. Section B, 1954, 67,775.
    13. 田福助, 電化學-原理與應, 1987, 台北市, 高立出版.
    14. 李倬嘉, 國立成功大學化學系碩士論文, 2008.
    15. 高雅君, 國立成功大學化學系碩士論文, 2008.
    16. 王瑞琪, 國立成功大學材料科學及工程學系博士論文, 2006.
    17. R. A. Laudise, A. A. Ballman, J. Phys. Chem, 1960, 64, 688.
    18. W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin, J., Crystal Growth,1999, 203, 186.
    19. G. Wulff, Z. Kristallogr, Mineral, 1901, 34, 449.
    20. B. Meyer, D. Marx., Phys. Rev. B, 2003, 67, 35403.
    21. D. R. Lide, HandBOOK of CHEMISTRY and PHYSICS,2003-2004, Boca Raton, CRC press.
    22. L. Xu, Y. Guo, Q. Liao, J. Zhang, D. Xu, The Journal of physical
    Chemistry B, 2005, 109, 13519.
    23. Z. Yang, Q.H. Liu, Journal of Materials Science, 2008, 43, 6527.
    24. Greene L. E., Law, M., Goldberger J., Kim, F. Johnson, J. C. Zhang,Y. F. Saykally, R. J., Angew. Chem. Int. Ed. Engl, 2003, 42, 3031.
    25. M. Grätzel, Heterogeneous photochemical electron transfer, 1989,Boca Raton, CRC Press.
    26. H. Tang, R. Sanjines, Journal of Applied Physics, 1994, 75, 2042.
    27. R. E. Denton, S. G. Tomlin, Journal of Physics D, 1972, 5, 852.
    28. W. F. Wu, S. T. Hsieh, Semiconductor Science and Technology,1994, 9, 1242.
    29. B. J. Chen, Phsyca E, 2004, 21, 103.
    30. J. Koike, K. Shimoe, H. Ieki. J.Appl. Phys., 1993, 32, 2337.
    31. S. A. Studenikin, N. Golego and M. Cocivera, J. Appl. Phys., 1998,84, 2287.
    32. W.L. Xu, M.J. Zheng, G.Q. Ding, W.Z. Shen, Chem. Phys. Lett.,2005, 411, 37.
    33. X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen,X. W. Fan, X. G. Kong, J. Lumin., 2002, 99, 149.
    34. Y. Du,W Shen, Appl. Phys. A, 2003, 76, 171.
    35. G. H. Du, Appl. Phys. Lett., 2006, 88, 243101.
    36. B. Lin, Y. Jia, Appl. Phys. Lett., 2001, 79, 943.
    37. A. B. Djurisic, W. M. Kwok, Appl. Phys. Lett., 2006, 88, 103107.
    38. L. Spanhel, M. Anderson, J. Am. Chem. Soc., 1991, 113, 2826.
    39. I. Shalish, H. Temkin, V. Narayanamurti, Phys. Rev. B, 2004, 69,245401.
    40. V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, M. Driess,Adv. Funct. Mater., 2005, 15, 1945.
    41. R. Könenkamp, R. C. Word, C. Schlegel, Appl. Phys. Lett., 2004, 85,1601.
    42. L. Li, Journal of Physical Chemistry C, 2007, 111, 7288.
    43. N. Fujimura, S. Gato, J. Xu, and T. Ito,, J. Cryst. Growth., 1993, 130,269.
    44. Z. Yang, Q.H. Liu, Materials Research Bulletin, 2007, 42, 221.

    下載圖示 校內:2019-07-27公開
    校外:2019-07-27公開
    QR CODE